07.05.2019 • Teilchenphysik

Myonen-Radiographie ermöglicht Blick in den Eigergletscher

Erstmalig Entstehungsprozess von Karmulden nachgewiesen.

Wie entstehen die typischen alpinen Landschaften mit einer Mulde und einem See, begrenzt durch einen steilen Gipfelkranz? Hängt die Bildung einer solchen Landschaft mit der Abtragung von Gletschern zusammen? Diese Fragen konnte jetzt von einem interdisziplinären Team des der Uni Bern beantwortet werden. Die Forscher haben dazu mit einer speziellen Technik, der Myonen-Radiographie, den Eigergletscher  quasi geröntgt, und zwar dort, wo er beginnt. So konnten sie nachweisen, dass Gletscher in ihrem Ursprungsgebiet den Fels nach hinten raspeln, diesen dabei übertiefen und so eine Mulde schaffen – die Karmulde. Dort kann sich ein See bilden, wenn der Gletscher vollständig weggeschmolzen ist.

Abb.: Der Augstsee in der österreichischen Steiermark ist ein Beispiel für...
Abb.: Der Augstsee in der österreichischen Steiermark ist ein Beispiel für einen Karsee. Hier formte einst ein Gletscher eine Mulde in den Fels. Als der Gletscher verschwand, entstand in der Mulde ein See vor der steil abfallenden Felskante. (Bild: C. Jansky)

Myonen sind hochenergetische kosmische Teilchen, welche Fels und Eis durchdringen und dabei unterschiedlich abgebremst und umgelenkt werden. Um die Bewegungen der Myonen zu verfolgen, installierte das Team Emulsionsfilme an drei Standorten im Tunnel der Jungfraubahnen. Die Filme sind mit einem Silberbromidgel beschichtet, welche die eintreffenden Myonen registrieren. Dabei entstehen mikroskopisch kleine Punkte auf den Filmen. Die Installation im Jungfraubahntunnel erfolgte so, dass die Filmoberflächen unter den Eigergletscher gerichtet waren. „Eintreffende Myonen durchdringen damit zuerst den Gletscher, dann den darunterliegenden Fels. Sie treffen im Jungfraubahntunnel schließlich auf die Emulsionsfilme“, erklärt Fritz Schlunegger von der Uni Bern. Die Myonenspuren auf den Filmen wurden anschließend im Labor unter dem Mikroskop vermessen und gescannt. „Damit können wir ein hochauflösendes, dreidimensionales Bild der Basis des Eigergletschers anfertigen, was Rückschlüsse auf die Prozesse unter dem Gletscher zulässt“, sagt Schlunegger.

Das Team konnte zeigen, dass der Gletscher bei seinem Ursprung den Fels übersteilt und nach hinten abraspelt. Damit entstehen kolkartige Vertiefungen – die Karmulden. Diese Karmulden sind typisch für die alpine Landschaft und werden sichtbar, wenn ein Gletscher vollständig geschmolzen ist. Eine solche tiefe Mulde liegt am Fuß der Jungfrau und insbesondere unterhalb des Jungfraujochs. „Diese Abtragungsmechanismen sind schon früher postuliert worden, und wir konnten nun zum ersten Mal den Nachweis dieser Prozesse unter einem aktiven Gletscher liefern“, fasst Schlunegger die Neuerkenntnisse zusammen.

U. Bern / RK

Weitere Infos

 

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen