Technologie

Steuern mit deformierten Flügeln

07.02.2020 - Flexibler Flügel kann sich aerodynamisch effizient verformen.

Bei einem Flugzeug entsteht ein beachtlicher Teil des Luft­widerstandes durch die Steuerflächen am Flügel. Werden die Flächen gebeugt, kann dies zu einem Abriss der Strömung über die zuvor glatte Flügel­oberfläche führen und der Luft­widerstand nimmt zu. Die Folge: Der Antrieb muss mehr leisten. Die Forschungs­gruppe von Paolo Ermanni am Labor für Verbund­werkstoffe und adaptive Strukturen (CMASLab) der ETH Zürich beschäftigt sich seit über zwölf Jahren mit der Frage der Verbesserung der aero­dynamischen Effizienz von Flugzeug­flügeln durch Einsatz von adaptiven Strukturen, so genannten Morphing-​Strukturen. In diesem Zusammenhang ist der Masterstudent Leo Baumann in Zusammenarbeit mit dem ETH Spin-​off 9T Labs der Frage nachgegangen, ob es möglich ist, solche leichten und selektiv deformier­baren Faser­verbund-​Strukturen effizient im 3D-​Druck­verfahren herzustellen.

Zur Lösung entwickelte das Team einen Flügel mit einer durchgehenden Haut, der über eine interne flexible Morphing-​Struktur verfügt. Diese Struktur ist viel anpassungs­fähiger als bei bisherigen Flugzeugen und kann sich aerodynamisch effizient verformen, wodurch sich der Luft­widerstand verringern lässt. Um die Tragfähigkeit des Morphing-​Flügels zu belegen und die Flug­eigenschaften zu testen, erstellte das Team auf Basis des Konzepts und der Herstellungs­methode für den Flügel eine Flugdrohne. Beim Material setzten sie auf Kunst-​ und Verbundstoffe, wobei die Material­kombination je nach Bauteil variiert, um die gewünschte Steifigkeit und Nach­giebigkeit zu erzielen. Abgesehen von der Aussenhaut und der Elektronik wurden alle Bauteile mit dem 3D-​Drucker, entwickelt von 9T Labs, hergestellt. 

Der Vorteil dieser Herstellungs­methode ist zum einen, dass die Composite-​Fasern spezifisch nach den gewünschten Eigen­schaften ausgerichtet werden können. So kommt die Variation der Steifig­keit des Materials bei hoher Festigkeit voll zur Wirkung. Zum anderen können wesentlich komplexere Geometrien mit weniger Material­abfall und zu geringeren Kosten realisiert werden als bei herkömmlichen Herstellungs­verfahren. Auch reduzierte das Team mit seinem Entwurf die Komplexität der Struktur und die Anzahl der Bauteile. Der Herstellungs­prozess ist wiederholbar und kann zudem leicht und schnell angepasst werden, um mehrere Iterationen desselben Bauteils zu fertigen, Ersatz­teile zu produzieren oder leichte Modi­fikationen vorzunehmen.

Die Flugdrohne wurde aus mehreren Komponenten gefertigt. Flügel, Rumpf und das V-​Leitwerk des Flugzeugs wurden im selben 3D-​Drucker hergestellt. Anschließend wurde die fachwerk­artige Innen­struktur mit einer dünnen Haut überzogen. Diese Kombination einer tragenden Innenstruktur mit einer aero­dynamisch glatten Oberfläche führte zu einem effizienten, leichten Flugzeug. Die einzelnen Bauteile aus Verbund­werkstoff und Kunststoff bestehen alle aus thermo­plastischem Material, wodurch die Einzelteile durch Wiedererwärmen für die Endmontage miteinander verschweisst werden könnten. Dieser Schweiß­prozess verbessert die Verbindungs­eigenschaften weiter, und es sind weniger zusätzliche Klebstellen notwendig.

Gesteuert wird das Flugzeug ausschließlich durch das Verformen der Steuer­flächen, wobei dasselbe Morphing-​Konzept auf das V-​Leitwerk für die Gier-​ und Nicksteuerung angewandt wird. Die Steuer­flächen werden durch acht Servomotoren angesteuert, die es ermöglichen, eine maximale Auslenkung der Hinterkante um 48 Millimeter ;zu erreichen. Durch die indi­viduelle Ansteuerung der Motoren entlang der Spannweite kann auch der Auftrieb variiert werden, was die struk­turelle Belastung verringert, und die Effizienz des Flugzeugs steigern kann. Bei einem dreiminütigen Erstflug erwiesen sich die Morphing-​Steuerflächen als mehr als ausreichend, um das Flugzeug zu steuern. Nicht nur das Morphing am Hauptflügel, sondern auch am V-​Leitwerk zeigte eine hervor­ragende Leistung, die eine volle Steuerbarkeit um die Roll-​, Nick-​ und Gierachse ermöglichte. Selbst verschiedene Akrobatik­manöver wie Loopings konnten erfolgreich geflogen werden.

ETHZ / JOL

Weitere Infos

Lithium-Ionen-Akkus modellieren

Um neue Materialien und Designs von Akkus zu entwickeln, ist ein tieferes Verständnis erforderlich. Hierbei hilft die mathematische Modellierung, die in dem Whitepaper sowie einem Webinar erklärt werden.

Whitepaper lesen!

Korrosion und Korrosionsschutz modellieren

Pro Sekunde werden durch Korrosion weltweit ca. 5 Tonnen Stahl zersetzt, was zu Schäden führt, die jährlich etwa 2 Billionen Euro kosten. Ebenfalls sind zahlreiche Chemieunfälle, Gasexplosionen und Umweltverschmutzungen auf Korrosionsschäden zurückzuführen. Es gibt also gute Gründe, sich intensiv mit effektiven Schutzmaßnahmen zu beschäftigen.

 

Jetzt registrieren!

T5 JobMesse

Starten Sie durch im Neuen Jahr! Besuchen Sie die T5 JobMesse am 25. März im Haus der Wirtschaft in Stuttgart und treffen Sie auf attraktive Arbeitgeber.

Weitere Informationen

Jobbörse

Physiker Jobbörse auf der DPG-Tagung in Dresden.

Weitere Infos

Lithium-Ionen-Akkus modellieren

Um neue Materialien und Designs von Akkus zu entwickeln, ist ein tieferes Verständnis erforderlich. Hierbei hilft die mathematische Modellierung, die in dem Whitepaper sowie einem Webinar erklärt werden.

Whitepaper lesen!

Korrosion und Korrosionsschutz modellieren

Pro Sekunde werden durch Korrosion weltweit ca. 5 Tonnen Stahl zersetzt, was zu Schäden führt, die jährlich etwa 2 Billionen Euro kosten. Ebenfalls sind zahlreiche Chemieunfälle, Gasexplosionen und Umweltverschmutzungen auf Korrosionsschäden zurückzuführen. Es gibt also gute Gründe, sich intensiv mit effektiven Schutzmaßnahmen zu beschäftigen.

 

Jetzt registrieren!

T5 JobMesse

Starten Sie durch im Neuen Jahr! Besuchen Sie die T5 JobMesse am 25. März im Haus der Wirtschaft in Stuttgart und treffen Sie auf attraktive Arbeitgeber.

Weitere Informationen

Jobbörse

Physiker Jobbörse auf der DPG-Tagung in Dresden.

Weitere Infos