Dossier

Exzellenzstrategie

Mit der Exzellenzstrategie stärken Bund und Länder die universitäre Spitzenforschung. Gefördert werden Exzellenzcluster zu bestimmten Forschungsfeldern und Exzellenzuniversitäten als strategische Unterstützung herausragender Universitätsstandorte.

Articles

Maike Pfalz
11 / 2016 Seite 8
DPG-Mitglieder

Eine Strategie für Exzellenz

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Stefan Jorda
02 / 2015 Seite 22

Eine Lösung für Lösungen

Koffeinfreier Kaffee, elektrochemische Energiespeicher oder die Proteinfaltung – auf den ersten Blick haben diese Themen nichts miteinander zu tun, doch tatsächlich spielen immer Lösungsmittel eine entscheidende Rolle.

Brüht man beispielsweise Kaffeebohnen mit heißem Wasser auf, lösen sich Koffein und Geschmacksstoffe, und das Ergebnis ist gewöhnlicher Kaffee. Ganz anders, wenn man überkritisches Kohlendioxid statt Wasser nimmt: Dann geht nur das Koffein in Lösung, die Geschmacksstoffe aber bleiben in den Bohnen, die sich nun als koffeinfreier Kaffee aufbrühen lassen. Die Rolle des Lösungsmittels bei diesem und vielen anderen Prozessen auf der Ebene einzelner Moleküle zu verstehen und ein vollständiges Bild zu entwickeln, ist Ziel des Exzellenzclusters RESOLV (Ruhr Explores SOLVation), in dem Chemiker, Chemieingenieure, Physiker und Biologen der Ruhr-Universität Bochum (RUB) sowie benachbarter Universitäten und Forschungs­institute zusammen arbeiten. „Wir möchten ‚Solvation Science‘ als eigenes interdisziplinäres Forschungsfeld etablieren, ähnlich wie die Neurowissenschaften“, sagt Martina Havenith, Professorin für Physikalische Chemie und Cluster-Koordinatorin. ...

weiterlesen
Maike Pfalz
01 / 2015 Seite 25

Exzellente Initiative?

Eine riesige Baugrube prägt derzeit die Callinstraße in der Hannoveraner Nordstadt. Seit 2013 graben die Bagger hier das Fundament für das Hannoversche Institut für Technologie (HITec) aus, dessen Herzstück ein 20 Meter hoher Turm für Experimente in der Schwerelosigkeit sein wird. 2011 wurde der 30 Millionen Euro teure Forschungsbau nach Empfehlung des Wissenschaftsrats in die gemeinsame Förderung von Bund und Ländern aufgenommen – eine direkte Folge der Aktivitäten, die der Exzellenzcluster Quest in Hannover ausgelöst hat.

Doch überraschend kam 2012 nach nur einer Förderperiode für Quest das Aus – lange bevor im kommenden Jahr Physiker, Geodäten und Ingenieure in das neue Gebäude einziehen werden. Wie aber lässt sich ein Forschungsbau, der auf Jahrzehnte ausgelegt ist, dauerhaft mit Wissenschaftlern und modernen Geräten füllen, wenn eine millionenschwere Förderung wegbricht?

Insgesamt 4,6 Milliarden Euro haben Bund und Länder für die Exzellenzinitiative zwischen 2006 und 2017 zur Verfügung gestellt. Bei den zuletzt getroffenen Entscheidungen im Juni 2012 wurden 11 Zukunftskonzepte, 45 Graduiertenschulen und 43 Exzellenzcluster ausgewählt. Für einige wenige Projekte kam dabei das Aus nach nur einer Förderperiode, nämlich für die Zukunftskonzepte des Karlsruher Instituts für Technologie (KIT), der Universität Göttingen und der Universität Freiburg sowie für fünf Graduiertenschulen und sechs Exzellenzcluster. In der Physik war neben Quest auch das Centrum für Funktionelle Nanostrukturen (CFN) in Karlsruhe betroffen.

Ende Oktober endete nun auch die Auslauffinanzierung, die alle nicht verlängerten Einrichtungen zwei Jahre lang erhalten haben. Viel ist an den geförderten Standorten passiert, Professoren wurden berufen, Nachwuchsgruppen aufgebaut, die Zusammenarbeit zwischen den Fächern sowie zwischen universitärer und außeruniversitärer Forschung wurde gestärkt. Neue Strukturen der Zusammenarbeit sind entstanden. Doch wie geht es weiter ohne das Geld aus der Exzellenzinitiative? Aus welchen Mitteln sollen die neuen Professuren und Arbeitsgruppen bezahlt werden? Diese Fragen haben sich die Mitarbeiterinnen und Mitarbeiter der Karlsruher und Hannoveraner Cluster spätestens seit Juni 2012 gestellt und individuelle Lösungen gefunden. ...

weiterlesen
Maike Pfalz
07 / 2014 Seite 24

Hör zu!

Wer kennt das nicht: Die Party ist in vollem Gange, überall stehen Grüppchen von Gästen zusammen und unterhalten sich, im Hintergrund läuft laute Musik. Da spricht einen die eigene Begleitung an, und man versteht nur Bahnhof. Zu viele Geräusche überdecken das gewünschte Gespräch. In solchen und anderen Situationen möchte der Exzellenzcluster „Hearing4all“ Hilfe bieten. Die Forscher in Oldenburg und Hannover arbeiten an Hörhilfen, welche die gesamte Bandbreite von minimaler Hörbeeinträchtigung bis zum kompletten Hörverlust abdecken: assistive Technologien, die in Alltagssituationen wie dem Telefonieren oder Fernsehen das Gehör unterstützen, Hörhilfen, die individuell auf den Patienten abgestimmt sind, und Cochlea-Implantate, die bei schwerem bis vollständigem Hörverlust helfen.

Ein zentraler Punkt ist die exakte, quantitative Diagnose der Hörbeeinträchtigung jedes Patienten. „Wir möchten Audiologie in eine exakte Wissenschaft verwandeln“, erklärt der Sprecher des Clusters, Birger Kollmeier, der als Physiker und Arzt in beiden Kerndisziplinen zuhause ist. Die Forscher möchten herausfinden, was die wichtigsten Kenngrößen sind, um Hörhilfen individuell anpassen und Interventionsmaßnahmen spezifisch planen zu können. In den ersten anderthalb Jahren der Förderperiode haben Kognitionspsychologen, Mediziner und Physiker eng auf diesem Gebiet zusammen gearbeitet, Ansätze entwickelt und Patientendaten erhoben. „Nun geht es in die Modellierungsphase, damit wir die Auswirkung von Hörpathologien auf die Signalverarbeitung exakt beschreiben können“, führt Kollmeier aus. Im nächsten Schritt gilt es, in komplexen Szenarien wie der eingangs erwähnten Party diejenigen Signale herauszufiltern, die das Hörgerät an den Patienten weiterleitet. Das ist ein Problem der Klassifizierung, denn das Gerät muss zunächst lernen, was Sprache ist und was nicht. „Bei der Klassifizierung haben wir in den letzten eineinhalb Jahren ordentlich Fortschritte erzielen und sogar einen internationalen Wettbewerb gewinnen können“, freut sich Birger Kollmeier.
Nach der erfolgreichen Klassi­fizierung muss das Hörgerät bzw. Cochlea-Implantat zudem wissen, welches die gewünschten Sprach­signale sind, also die Worte meiner Partybegleitung und nicht die Gespräche anderer Gäste. Dazu kommen sog. Brain-Computer-Interfaces zum Einsatz. Diese Systeme nehmen beim Menschen ein Elektroenzephalogramm (EEG) auf, um die Verarbeitung akustischer Signale im Gehirn zu verfolgen. Das Gehirn eines nicht hörgeschädigten Menschen verfügt über effiziente Vorhersagemecha­nismen, die es ihm erlauben, die Aufmerksamkeit im richtigen Moment auf den Gesprächspartner zu lenken. Gelingt es, diese Prozesse zu verstehen, könnte man dieses Wissen nutzen, um das gewünschte akus­tische Signal mittels Hörhilfe zum richtigen Zeitpunkt zu verstärken. Erste Erfolge sind bereits zu verzeichnen: „Wir haben das EEG-System inzwischen so miniaturisiert, dass es im Prinzip drahtlos in eine Baseball-Kappe passt“, erklärt Kollmeier. Zudem konnten die Wissenschaftler eine vereinfachte Situation, in der sich zwei Schallquellen abwechseln, im EEG erfassen. In der Realität überlagern sich allerdings meist mehrere Signale...

weiterlesen
Oliver Dreissigacker
04 / 2014 Seite 26

Exzellente Elektronik für übermorgen

Der Begriff „Silicon Saxony“ ist zu Recht weit über die Landesgrenzen hinaus bekannt. In Anlehnung an das kalifornische Silicon Valley steht er für die Region von und um Dresden – dem größten europäischen Standort für Mikroelektronik und organische Elektronik. Rund 300 Firmen mit 40. 000 Mitarbeitern haben sich in einem Verband gleichen Namens zusammengeschlossen, in dieser Branche der größte in Europa. Aber auch die Forschungslandschaft ist dicht bevölkert, mit mehreren Max-Planck-, Fraunhofer-, Helmholtz- und Leibniz-Instituten sowie den TUs in Chemnitz und Dresden. Letztere erhielt 2012 das Prädikat einer Exzellenz-Universität, im gleichen Jahr erhielt sie auch den Zuschlag für den Exzellenzcluster „Center for Advancing Electronics Dresden“ (cfaed).

Die Dimensionen der CMOS-Halbleiterbauelemente gehen derzeit in schnellen Schritten von 28 auf 14 Nanometer herunter. Es ist zwar absehbar, die CMOS-Technologie bis auf 5 Nanometer weiter skalieren zu können, bei einem Abstand der Siliziumatome im Gitter von 0,5 Nanometer liegen dann aber Strukturen vor, die nur noch eine Kantenlänge von zehn Atomen haben. Experten bei Intel halten sogar 3,5 Nano­meter noch für machbar. Damit ist die physikalische Grenze unweigerlich erreicht und die CMOS-Technologie, die mit ihrer Dynamik die rasante Entwicklung der „digitalen Revolution“ mit Internet, Smartphones und Mobil­funk erst möglich gemacht hat, ist endgültig ausgereizt. „Die alte ITRS Roadmap sah die Grenze noch im Jahr 2020, wenn wir jetzt auf 5 oder 3,5 Nanometer gehen, haben wir vielleicht noch bis 2030“, schätzt Gerhard Fettweis vom Institut für Nachrichtentechnik der TU Dresden, der Sprecher des Exzellenzclusters. Daher geht es im cfaed darum, elektronische Systeme aller Art auf anderem Wege voranzutreiben. ...

weiterlesen
Alexander Pawlak
11 / 2013 Seite 20

Dynamik in Echtzeit

Der Ruf einer Exzellenzuniversität blieb der Universität Hamburg bislang verwehrt, doch in der zweiten Runde der Exzellenz­initiative konnte sie mit dem Exzellenzcluster zur Klimaforschung CLISAP punkten. In der dritten Runde ging nicht nur CLISAP in die Verlängerung, sondern auch ein neuer Exzellenzcluster für Spitzenforschung im Bereich der Photonen- und Nanowissenschaft an den Start, das „Hamburg Centre for Ultrafast Imaging – Structure, Dyna­mics and Control of Matter at the Atomic Scale“, kurz CUI. Insgesamt 25 Millionen Euro stehen dafür in fünf Jahren bis 2017 zur Verfügung. Bis zu hundert neue Stellen sollen besetzt werden.

„Die Natur ist nicht statisch. Das ist der Leitsatz für die Forschung des CUI“, sagt Klaus Sengstock, einer der drei Sprecher und einer der 19 „Principal Investigators“ des Exzellenzclusters. Wesentliches Ziel des CUI ist es, die Dynamik besonders relevanter Systeme an den Schnittstellen von Physik, Chemie, Biologie bis hin zur Medizin beobachten zu können. „Wir wissen sehr viel über statische Strukturen, aber oft nicht, wie sie dynamisch funktionieren“, betont Sengstock. Beispiele dafür sind die Signal­übertragung im Körper auf mikroskopischer Skala und die detaillierte Funktionsweise von Nanokatalysatoren. Für deren Verständnis ist es nötig, die Dynamik in Echtzeit verfolgen zu können.

Dem CUI stehen vor Ort eine Vielzahl passender Werkzeuge zur ultraschnellen Abbildung zur Verfügung, von fs-Lasersystemen im Labor bis zum Freie-Elektronen-Laser FLASH. Ab 2015 soll der European XFEL extrem intensive Röntgenlaserblitze erzeugen. Zudem nutzen die Wissenschaftlerinnen und Wissenschaftler internationale Einrichtungen wie die Linac Coherent Light Source (LCLS) in Stanford. „Dort haben Hamburger Kollegen derzeit die höchsten Anteile an Strahlzeit“, sagt Sengstock.

Eine gute Basis für viele CUI-Forscherinnen und Forscher ist das Center for Free-Electron Laser Science (CFEL) am Campus Bahren­feld, das 2008 seine Arbeit aufgenommen hat und seit Juni 2013 in einem beeindruckenden, kreisrunden Neubau residiert, in dem auch Mitglieder des Exzellenzclusters unterkommen. In unmittelbarer Nachbarschaft liegt das Zentrum für Optische Quanten­technologien (ZOQ), an dem Sengstock arbeitet. ...

weiterlesen
Stefan Jorda
06 / 2013 Seite 24

Die großen Fragen im Fokus

Allen Anlass zur Freude hatten die Physikerinnen und Physiker der Universität Mainz im Juni 2012: In der zweiten Runde der Exzellenzinitiative hatten sie sich mit ihrem Antrag für den Exzellenzcluster „Precision Physics, Fundamental Interactions and Structure of Matter“ (PRISMA) durchgesetzt. Im Grunde geht es dabei um die ganz großen Fragen nach der Natur der Dunklen Materie oder der Physik jenseits des Standardmodells, die Heerscharen von Physikern weltweit mit dem Large Hadron Collider oder anderen Großexperimenten beantworten möchten. Welche Beiträge können dazu 250 Wissenschaftler im Rahmen eines auf fünf Jahren genehmigten und mit 30 Millionen Euro finanzierten Exzellenzclusters leisten? „Wir fokussieren uns auf einige wenige Fragen, die wir mit sehr komplementären Methoden beantworten möchten“, erläutert Hartmut Wittig, Professor für ­theo­retische Physik und einer der beiden Cluster-Koordinatoren.

vier Strukturmaßnahmen. Eine davon, ein neuer Beschleuniger, wird mit 10 Millionen Euro allein ein Drittel der gesamten Mittel kos­ten. Der „Mainz Energy-Recover­ing ­Superconducting Accelerator“ MESA soll am Institut für Kernphysik entstehen, das bereits seit vielen Jahren Beschleuniger betreibt. Beim Bau der supraleitenden Beschleunigerkavitäten profitiert das Institut von der aufwändigen Fertigungsinfrastruktur, die am Helmholtz-Institut Mainz, dem wichtigsten außer­universitären Partner von PRISMA, zur Verfügung stehen wird. MESA ist ein Elektronenbeschleuniger mit einer Schwerpunktsenergie zwischen 150 und 200 MeV. „Das liegt Größenordnungen unterhalb der ­Energie des LHC“, sagt Wittig, „aber seine extrem hohe Strahl­intensität wird zwei neue Schlüsselexperimente ermöglichen“. Diese sind die Suche nach „dunklen Photonen“ sowie die hochpräzise Messung des „elektroschwachen Mischungs­winkels“ bei niedrigen Energien.

Dunkle Photonen sind hypothetische schwere Verwandte der „normalen“ Photonen, denen sie in vielen Eigenschaften ähneln und mit denen sie mischen. Sie tauchen in den verschiedensten Erweiterungen des Standardmodells als Vermittler einer neuen fundamentalen Kraft auf und koppeln an Dunkle Materie. Theoretiker haben in den vergangenen Jahren ein ganzes Spektrum von Modellen entworfen, die mithilfe dieser neuen Teilchen sowohl einige Anomalien in der Astrophysik als auch das unverstandene magnetische Moment des Myons erklären können. Dunkle Photonen könnten entstehen, wenn der intensive Elektronenstrahl von ­MESA auf ein Target prallt; zerfallen würden sie in ein Paar aus Elektron und Positron, das aus einem riesigen Hintergrundsignal heraus zu filtern ist. „Die Existenz eines dunklen Photons ist zugegebenermassen spekulativ, seine Entdeckung wäre jedoch eine wissenschaftliche Sensation“, meint Matthias Neubert, ebenfalls theoretischer Physiker und PRISMA-Koordinator. ...

weiterlesen
Wolfgang Ketterle
09 / 2012 Seite 3

Kein Ausruhen an der Spitze

weiterlesen
Maike Keuntje
04 / 2009 Seite 24

Die Welt durchleuchten

weiterlesen
Stefan Jorda
02 / 2009 Seite 22

Nanoforschung auf solidem Fundament

weiterlesen
Alexander Pawlak
11 / 2008 Seite 24

Brückenbauer im Nanoreich

weiterlesen
Maike Keuntje
09 / 2008 Seite 30

Forschen am Quantenlimit

weiterlesen
Stefan Jorda
06 / 2008 Seite 26

Das Universum enträtseln

weiterlesen

News

Hochschule

Exzellenz im Cluster

27.09.2018 - In der Exzellenzstrategie des Bundes und der Länder sind die Entscheidungen über die Exzellenzcluster gefallen.

Forschung

Empfehlungen für Exzellenz

29.01.2016 - Heute hat die internationale Expertenkommission ihre Empfehlungen zur Fortsetzung der Exzellenzinitiative vorgestellt.

Forschung

Freud und Leid

19.06.2012 - Am 15. Juni sind die Entscheidungen in der zweiten Runde der Exzellenzinitiative gefallen – insgesamt sechs Exzellenzcluster konnten sich in der Physik durchsetzen, drei...

Links

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Produkte des Monats

Fluid-Struktur-Interaktion simulieren

Die Fluid-Struktur-Interaktion (FSI) zählt zu den häufigsten Phänomenen in Wissenschaft und Technik. In diesem Webinar zeigen wir den Einsatz der COMSOL Multiphysics® Software zur Modellierung von FSI.

 

Zur Registrierung

Produkte des Monats

Fluid-Struktur-Interaktion simulieren

Die Fluid-Struktur-Interaktion (FSI) zählt zu den häufigsten Phänomenen in Wissenschaft und Technik. In diesem Webinar zeigen wir den Einsatz der COMSOL Multiphysics® Software zur Modellierung von FSI.

 

Zur Registrierung