05.03.2014

Kollektive und kohärente Plasmonen im Fokus

Universität Bayreuth richtet Emmy-Noether-Gruppe um Matthias Karg zu SPASER-basierten Nanolasern ein.

Die Entwicklung des Lasers hat seit den 1960er Jahren auf zahlreichen Gebieten – beispielsweise in der Medizin oder den elektronischen Medien – zu technologischen Innovationen geführt, die aus dem Lebensalltag nicht mehr wegzudenken sind. Eine aktuelle Herausforderung liegt derzeit in der Miniaturisierung der Laserquellen. Besonders in Anwendungsbereichen wie der optischen Datenverarbeitung und der hochauflösenden Mikroskopie besteht ein starkes Interesse an Lasern, die deutlich kleiner sind als klassische Laser. Daher gewinnen Forschungsarbeiten rasant an Bedeutung, die auf die Entwicklung von Nanolasern abzielen. Idealerweise besteht ein Nanolaser aus einem einzigen Nanoteilchen, das etwa 500-mal kleiner ist als die Dicke eines menschlichen Haares.

Abb.: Matthias Karg (Bild: U. Bayreuth)

An der Universität Bayreuth wird Matthias Karg in den nächsten fünf Jahren eine Emmy Noether-Forschungsgruppe leiten, welche die Grundlagenforschung auf diesem Gebiet weiter vorantreiben wird. Matthias Karg ist 2011 nach einem zweijährigen Postdoc-Aufenthalt von der Universität Melbourne in Australien an die Universität Bayreuth gewechselt. Im Jahr 2012 wurde er hier zum Juniorprofessor für Kolloidale Systeme berufen. Seine Arbeitsgruppe ist auf dem Gebiet der Polymer- und Kolloidforschung in der Physikalischen Chemie tätig und befasst sich mit neuen, optisch aktiven Funktionsmaterialien.

„Wir werden uns dabei auf ein sehr spannendes Gebiet vorwagen“, erklärt Karg. „Dabei wollen wir die Grundlagen für einen neuartigen Typ von Nanolasern erforschen, die eines Tages auf manchen Technologiefeldern geradezu revolutionäre Folgen haben könnten – beispielsweise in der Sensorik, bei optischen Computern und bei der hochauflösenden Mikroskopie. Die Besonderheit der Nanolaser liegt dabei nicht zuletzt in der Möglichkeit, durch nanoskalige optische Bauteile die Beugungsgrenze zu überwinden.“

Diese neuartigen Nanolaser nutzen den so genannten „SPASER-Effekt“. Die Abkürzung steht für „Surface Plasmon Amplification by Stimulated Emission of Radiation“. Während in einem konventionellen Laser Photonen verstärkt werden, ist ein SPASER in der Lage, gleiche Oberflächenplasmonen gezielt anzuregen und zu verstärken, also kollektive Schwingungen der Leitungselektronen in metallischen Strukturen. Die Bayreuther Forschergruppe will leuchtstarke Fluorophore daraufhin untersuchen, unter welchen Bedingungen sie diese Schwingungen verstärken können.

„Weltweit besteht heute ein enormes Interesse an den materialwissenschaftlichen und physikalischen Grundlagen solcher SPASER-basierten Nanolaser. Allerdings bedarf es sehr anspruchsvoller spektroskopischer Methoden und einer ausgeprägten interdisziplinären Zusammenarbeit, um die vielen noch offenen Fragen zu beantworten“, erläutert Karg. „Die Universität Bayreuth bietet uns hier ideale Voraussetzungen. Es existieren hervorragend ausgestattete Laboratorien, die auf die Synthese, Charakterisierung und Funktionalisierung nanostrukturierter Materialien ausgerichtet sind. Darüber hinaus steht hier eine außergewöhnliche Vielfalt von Methoden zur Verfügung, die für die Charakterisierung und Verarbeitung komplexer Kolloide sowie für deren theoretische Beschreibung von Bedeutung sind.“

U. Bayreuth / DE

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen