15.04.2024

Elektronenglas mit robusten Quasiteilchen

Verschränkung schützt Quasiteilchen wirksam vor Störstellenstreuung.

Wissenschaftler der Julius-Maximilians-Universität Würzburg (JMU) haben eine Entdeckung gemacht, die zu einem besseren Verständnis der Quantenverschränkung in den Kuprat-basierten Hochtemperatur-Supraleitern beitragen könnte. Die Quasiteilchen dieser rätselhaften Quantenmaterialien, die Zhang-Rice-Singuletts, erweisen sich bezüglich extremer Unordnung im Material als überraschend robust. Diese Widerstandsfähigkeit der Teilchen in ansonsten glasartiger elektronischer Umgebung ist durch deren Quantenverschränkung bedingt – eine Form der Quantenbindung, die ein Loch und einen Spin zu einem effektiven Quasiteilchen zusammenbindet und es dem Teilchen somit erschwert, an Verunreinigungen zu streuen.


Abb.: Verschränkte Zhang-Rice-Singuletts tanzen durch ein Meer von...
Abb.: Verschränkte Zhang-Rice-Singuletts tanzen durch ein Meer von ungeordneten Defektzuständen.
Quelle: A. Consiglio, U. Würzburg

Im Festkörper bestimmen effektive Einheiten aus Teilchen und verdrängter Umgebung typischerweise dessen niederenergetisches Anregungsspektrum und werden als Quasiteilchen bezeichnet. In einem Metall bestehen die Quasiteilchen aus Elektronen, umgeben von einer Polarisationswolke aus anderen Elektronen. Elektron und Polarisation bewegen sich dabei gemeinsam kohärent. Bei dieser Bewegung streuen die Quasiteilchen an den Verunreinigungen und der Unordnung im Metall, wodurch die Bewegung der Elektronen behindert wird. Es entsteht ein elektrischer Widerstand. 

In einer nun veröffentlichten Studie berichtet das Team um Forscher der JMU, dass die Quasiteilchen in Kuprat-Verbindungen offenbar nur sehr selten streuen. Diese Materialien bestehen aus einer komplexen Schichtstruktur aus Kupfer und Sauerstoff und sind im dotierten Zustand vor allem für ihre Supraleitung bei hohen Temperaturen bekannt. Die Quasiteilchen in diesen Kupraten sind Zhang-Rice-Singuletts (ZRS), also eine verschränkte Vereinigung aus Sauerstoffloch und Kupferspin, welche sich in einem quantenmechanischen Tanz durch den Kristall bewegt.

Die Würzburger Wissenschaftler testeten diese Quasiteilchen in einer ausgesprochen ungeordneten Kuprat-Verbindung, in der bis zu vierzig Prozent der Kupferatome zufällig durch Lithium ersetzt wurden. Die Unordnung ist dadurch so groß – das Material also so voller Hindernisse – dass sie die normalen Elektronen völlig zum Stillstand bringt. Physiker bezeichnen ein solches System auch als Elektronenglas, da sich die Elektronen darin wie die Atome in einem Glas im Vergleich zum Beobachtungszeitraum nur sehr langsam bewegen. Mit anderen Worten: Es gibt kein vor und zurück mehr, die Bewegung fließt nur sehr zäh dahin.

Der Tanz aus Loch und Spin im Zhang-Rice-Singulett Quasiteilchen bleibt jedoch – allen Widrigkeiten zum Trotz – durch die Verunreinigungen des Materials völlig ungestört. Es ist ihre Quantenverschränkung, die deren Streuung an Störstellen unterdrückt und so dafür sorgt, dass diese sich durch das Material bewegen können, als gäbe es auf dieser Tanzfläche für sie keine Hindernisse.

Dieser Erstauftritt des Zhang-Rice-Singuletts in einem Kuprat-basierten Elektronenglas zeigt die stabilisierende Wirkung der Quantenverschränkung in Quasiteilchen. Über das Verständnis der Kuprat-Supraleiter hinaus könnten diese Erkenntnisse weitreichende Auswirkungen auf das Verständnis zukünftiger Technologien haben, welche explizit auf Quantenkohärenz basieren. Insbesondere die Fähigkeit, Quantenzustände mit Hilfe von Quantenverschränkung gegenüber externen Störungen zu schützen, könnte eine entscheidende Rolle bei der Realisierung neuartiger Quantencomputer spielen.

U. Würzburg / DE


Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen