Juni 2015

Der Galaxienhaufen Abell 2218 wirkt als besonders starke Gravitationslinse, ein Effekt der Allgemeinen Relativitätstheorie, die hundert Jahre alt wird. (vgl. ab S. 27, Bild: NASA, ESA und Johan Rischard, Caltech, USA)

Meinung

Jürgen Mlynek
06 / 2015 Seite 3

Klare Ansagen für junge Forscher

weiterlesen

Aktuell

Maike Pfalz
06 / 2015 Seite 6

Ranking in neuem Licht

weiterlesen
Alexander Pawlak
06 / 2015 Seite 7

Münchner Physikgeschichten

weiterlesen
Alexander Pawlak
06 / 2015 Seite 8

Ausgesetzt, repariert und gefeiert

weiterlesen
Maike Pfalz
06 / 2015 Seite 10

Empfohlene Bauten

weiterlesen
Maike Pfalz
06 / 2015 Seite 11

Beschluss für Exzellenz

weiterlesen
Stefan Jorda
06 / 2015 Seite 11

Vom VIP- zum Forschungsflugzeug

weiterlesen
DFG
06 / 2015 Seite 12

DFG: Neue Graduiertenkollegs

weiterlesen
Stefan Jorda
06 / 2015 Seite 12

Starkes Feld

weiterlesen
Wissenschaftsrat/SJ
06 / 2015 Seite 12

Mehr als Regeln

weiterlesen
Matthias Delbrück
06 / 2015 Seite 13

Trilog in Europa

weiterlesen
Matthias Delbrück
06 / 2015 Seite 13

Frankreich fördert Photonik

weiterlesen
Rainer Scharf
06 / 2015 Seite 14

USA

Teleskope für den Weltraum / Forschungszentren auf Diät / Kampf den Patenthaien

weiterlesen

Im Brennpunkt

Wolfgang Häusler und Reinhold Egger
06 / 2015 Seite 18

Kontrollierte Schlangenlinien

In Graphen gelang erstmals der direkte Nachweis von schlangenförmigen Elektronenbahnen.

weiterlesen
Ralf Vogelgesang, Jan Vogelsang und Christoph Lienau
06 / 2015 Seite 20

Elektronen steuern mit Licht

Die Elektronenmanipulation durch kohärente optische Nahfelder führt zu Rabi-Oszillationen freier Elektronenwellenpakete.

weiterlesen

Forum

Alexander Pawlak
06 / 2015 Seite 23

„Ich wollte es den Zweiflern zeigen“

Seit fast dreißig Jahren beschäftigt sich Stefan W. Hell (52) mit Mikroskopie. Schon sehr früh setzte er sich zum Ziel, eine Methode zu entwickeln, mit der sich die Beugungsgrenze durchbrechen lässt. Dieses verfolgte er hartnäckig weiter und nahm dafür eine wechselvolle akademische Karriere in Kauf, die ihn schließlich ans Max-Planck-Institut für biophysikalische Chemie in Göttingen führte, wo er seit 2002 Direktor ist. 2014 erhielt er gemeinsam mit Eric Betzig und William E. Moerner den Chemie-Nobelpreis für die Entwicklung superauf­lö­sender Fluoreszenzmikroskopie.

Woher kam die Idee, sich mit der Auflösungsgrenze zu ­beschäftigen?

Zur Mikroskopie bin ich über meine Doktorarbeit über Konfokalmikroskopie bei Siegfried Hunklinger in Heidelberg gekommen. An sich hatte ich das Gefühl, dass das Thema Lichtmikroskopie ausgereizt ist, andererseits wollte ich etwas fundamental Neues machen. In diesem Spannungsfeld habe ich angefangen, herum zu überlegen und war rasch davon überzeugt: Da muss doch was drin sein!

Woher kam die Gewissheit?

Aus dem breiten Wissen der Physik, das ich mir im Studium aufgebaut habe. Während der Promotion hatte ich die Intuition entwickelt, dass sich doch irgendeins der vielen Phänomene, welche die Physik im 20. Jahrhundert gefunden hat, einsetzen lassen müsste, um die Beugungsgrenze im Lichtmikroskop zu knacken...

weiterlesen

Schwerpunkt

Matthias Bartelmann
06 / 2015 Seite 27

Einsteins Schöpfung

Wohl keine Theorie der modernen Physik ist so sehr Schöpfung eines einzelnen Menschen wie die Allgemeine Relativitätstheorie (ART). Ihre Vorhersagen sind heutzutage auf vielfältigste Weise triumphal bestätigt. Das auf der ART fußende kosmologische Standard­modell deutet auf die Existenz Dunkler Materie und einer abstoßenden Dunklen Energie. Gleichzeitig nimmt Einsteins Theorie eine solitäre Stellung ein. Noch immer ist unklar, wie sie sich mit den Quantenfeldtheorien in Verbindung bringen lassen könnte.

Um die Wende zum 20. Jahrhundert gab es eigentlich keinen Grund für die Entwicklung einer neuen Gravitationstheorie. Die einzige damals bekannte Abweichung von der Newtonschen Gravitationstheorie, die Periheldrehung der Merkurbahn, konnte versuchsweise durch Störungen erklärt werden. Für den hypothetischen Planet, dem man diese Störungen zuschreiben wollte und der innerhalb der Merkurbahn um die Sonne hätte laufen sollen, gab es bereits einen Namen: Vulkan.

Es war nicht die Gravitationstheorie, die Einstein auf den Weg von der Speziellen Relativitätstheorie (SRT) zur ART brachte. Obwohl die SRT den absoluten, affinen Raum der Newtonschen Mechanik aufgab, auf dem die Galilei-Transformationen von einem Inertialsystem in ein anderes transformierten, behielt sie die Inertialsysteme bei. Später hat es Einstein als den größten konzeptionellen Schritt der ART bezeichnet, dass sie die Inertialsysteme aufgab und an ihre Stelle die frei fallenden Bezugssysteme setzte, was aufgrund des Äquivalenzprinzips möglich wurde. Die ART erhebt den empirischen Befund zum Prinzip, dass die träge und die schwere Masse beliebiger Körper gleich seien. Dies führt zu den vertrauten Betrachtungen eines im Gravitationsfeld frei fallenden oder außerhalb des Gravitationsfeldes gleichförmig beschleunigten Aufzugs: Fällt eine Aufzugskabine frei im Gravitationsfeld, lässt sich in ihr kein Gravitationsfeld mehr nachweisen. Beschleunigt man eine Aufzugskabine gleichförmig außerhalb eines Gravitationsfeldes, kann ein Experimentator in der Kabine nicht unterscheiden, ob er durch die Beschleunigung oder durch ein Gravitationsfeld an den Boden der Kabine gedrückt wird...

weiterlesen
Michael Kramer und Norbert Wex
06 / 2015 Seite 31

Präzisionstests mit Pulsaren

Ähnlich zu elektromagnetischen Wellen sollten auch Gravitationswellen existieren, die sich mit Licht­geschwindigkeit ausbreiten. Auch wenn diese Wellen bislang nicht direkt beobachtet wurden, steht ihre Existenz inzwischen außer Frage. Der indirekte Nachweis gelang mithilfe von kosmischen „Leuchttürmen“, den Pulsaren. Ihr Bahnumlauf beschleunigt sich messbar, da sie aufgrund der Abstrahlung von Gravitations­wellen Bahnenergie verlieren.

Am 18. November 1915 zeigte Albert Einstein, dass seine Allgemeine Relativitätstheorie (ART) auf natürliche Weise die beobachtete Periheldrehung des Merkur erklärt. Die Lösung dieses seit 1859 ungelös­ten Problems der Himmelsmechanik gelang Einstein bereits eine Woche, bevor er die ART als abgeschlossen erklären konnte, und markiert die erste ­experimentelle Überprüfung der Theorie. In demselben Beitrag schlug er des Weiteren die Lichtablenkung im Gravitationsfeld der Sonne und die Gravitationsrotverschiebung von Spektrallinien als Tests der ART vor. Der erste Nachweis der Lichtablenkung glückte ein paar Jahre später während der totalen Sonnenfinsternis am 29. Mai 1919. Die damalige Messung wies zwar noch eine recht große Unsicherheit von rund 15 Prozent auf, entschied aber zugunsten der ART, die verglichen mit der Newtonschen Theorie den doppelten Ablenkwinkel vorhersagt. Heute ist die Ablenkung an der Sonne am besten mittels der Radiostrahlung von Quasaren nachgewiesen. Die Vermessung der Quasar-Positionen mit der VLBI-Methode stimmt im Rahmen der Messgenauigkeit von etwa 10–4 mit der ART überein.

Die Krümmung der Raumzeit durch die Masse der Sonne lenkt aber nicht nur das Licht ferner Sterne ab, sondern verlängert auch die Laufzeit elektromagnetischer Wellen. Den besten Nachweis dieser sog. Shapiro-Laufzeitverzögerung ermöglichten 2002 die Telemetrie-Daten der Cassini-Sonde, die den Planeten Saturn umkreist. Sie erreichte eine relative Genauigkeit von etwa 10–5. Als besonders schwierig stellte es sich heraus, die Gravitationsrotverschiebung in den Spektrallinien der Sonne zu beobachten, und zwar aufgrund nichtgravitativer Einflüsse wie Plasmaströmungen in der Photosphäre. Mit hoher Präzision gelang der Nachweis der Rotverschiebung erst mit dem Mößbauer-Effekt sowie Atomuhren...

weiterlesen
Thomas W. Baumgarte
06 / 2015 Seite 39

Simuliertes Verschmelzen

Rechtzeitig zum hundertsten Geburtstag der Allgemeinen Relativitätstheorie hat ihre numerische Behandlung enorme Fortschritte gemacht. Mit neuen Methoden ist es jetzt möglich, Szenarien zu simulieren, die mit analytischen Methoden unzugänglich sind − zum Beispiel die Verschmelzung zweier Schwarzer Löcher.

Kurz zusammengefasst beschreibt die Allgemeine Relativitätstheorie (ART) Gravitation mit Hilfe der Krümmung der Raumzeit. Oder, wie John Wheeler es eloquent beschrieben hat, „Matter tells spacetime how to curve, and curved spacetime tells matter how to move.“ Mathematisch ist dies ausgedrückt in der Einsteinschen Feldgleichung1)

deren hundertsten Geburtstag wir dieses Jahr feiern. Leider ist dieses Juwel einer Gleichung für Nichtspezialisten etwas unzugänglich. Für den Rahmen dieses Artikels müssen wir sie aber zum Glück nicht im Detail verstehen.Auf den ersten Blick scheinen die beiden Gleichungen nicht viel gemeinsam zu haben (genau genommen nur π und G), aber sie sind tatsächlich eng verwandt. Die Dichte ρ spielt die Rolle einer Quelle auf der rechten Seite der Poisson-Gleichung (2); in der Einstein-Gleichung (1) wird die Dichte ausgedrückt durch den Energie-Impuls-Tensor Tab. Auf der linken Seite der Poisson-Gleichung ist der Laplace-Operator =2 eine Abkürzung für zweite (räumliche) Ableitungen des Gravitationspotentials , dem fundamentalen Objekt in der Newtonschen Gravitationstheorie. Das fundamentale Objekt in der ART ist die Raumzeit-Metrik gab, und tatsächlich befinden sich zweite Ableitungen der Metrik auf der linken Seite der Feldgleichung (1) − diese sind allerdings gut versteckt im Einstein-Tensor Gab. Stattdessen vergleichen wir sie mit ihrem Newtonschen Cousin, der Poisson-Gleichung

...

weiterlesen
Peter Schneider
06 / 2015 Seite 45

Linsen im Kosmos

Lichtstrahlen folgen den Nullgeodäten der Metrik und werden daher im Schwerefeld abgelenkt. Dieser Effekt besitzt wichtige astrophysikalische Anwendungen: Wenn das Licht einer entfernten Quelle durch eine Massenkonzentration („Gravitationslinse“) zwischen uns und der Quelle abgelenkt wird, lässt sich daraus viel lernen – sowohl über die Massenverteilung der Linse als auch über die Eigenschaften der Quelle und die des Raums dazwischen. Der Gravitationslinsen­effekt ist inzwischen als zentrales Werkzeug der Astrophysik und Kosmologie etabliert.

Die Messung der Lichtablenkung im Gravitationsfeld der Sonne während einer Sonnenfinsternis 1919 bestätigte eine der zentralen Vorhersagen der Allgemeinen Relativitätstheorie. Das verhalf ihr zur breiten Anerkennung in der Fachwelt und weit darüber hinaus. Schon bald darauf wurde über weitere spektakuläre Effekte der gravitativen Lichtablenkung spekuliert: Falls sich eine genügend massereiche und kompakte Massenverteilung zwischen einer entfernten Quelle und uns befindet, kann es mehrere Lichtstrahlen geben, die uns mit der Quelle verbinden − und damit wäre die Quelle an mehreren Positionen der Sphäre zu sehen (Abb. 1). Die ersten Mehrfachbilder eines Quasars wurden 1979 entdeckt; inzwischen ist die Zahl solcher starken Gravitationslinsensysteme auf mehrere hundert angewachsen, wobei als Quellen aktive und normale Galaxien auftreten und Galaxien oder Gala­xienhaufen als Linse wirken [1].

Da Lichtbündel nicht nur als Ganzes, sondern auch differentiell abgelenkt werden, sind die beobachteten Bilder im Vergleich zum Bild der unabgelenkten Quelle verzerrt. Dies hat zwei Effekte zur Folge: Erstens ändert sich die Querschnittsfläche (bzw. der beobachtete Raumwinkel) der Lichtbündel. Da die Flächenhelligkeit aufgrund des Liouville-Theorems erhalten bleibt, ändert sich der beobachtete Fluss eines Bildes um diese Flächenverzerrung. Zweitens verändert sich die Form der Bilder. Beide Effekte können dramatische Konsequenzen haben, etwa leuchtende Bögen in Galaxienhaufen (Abb. 2). Der Fluss dieser Bögen kann den der „ungelinsten“ Quelle um einen Faktor 20 oder mehr übersteigen. Wie schon Fritz Zwicky 1937 vorhersagte, erlaubt uns der Linseneffekt daher einen besseren Blick auf leuchtschwache, sehr weit entfernte Quellen. In den meisten Fällen ist die Bildverzerrung wesentlich unspektakulärer als bei den leuchtenden Bögen und lässt sich in individuellen Bildern nicht identifizieren; wir sprechen dann vom „schwachen Gravitationslinsen­effekt“. Da jedoch in unserem Universum die Dichte von schwachen und weit entfernten Galaxien an der Sphäre sehr groß ist, ist es möglich, diese Verzerrungen statistisch nachzuweisen und quantitativ zu untersuchen...

weiterlesen

Geschichte

Anne J. Kox
06 / 2015 Seite 51

Ein Pionier der Magneto-Optik

Pieter Zeeman gehörte zu der kleinen Zahl von Physikern, die für den großartigen Ruf der nieder­ländischen Physik um 1900 verantwortlich waren. Zusammen mit seinem Kollegen Johannes Diderik van der Waals dominierte er über viele Jahre die Physik an der Universität von Amsterdam.

Geboren wurde Zeeman am 25. Mai 1865 in der Kleinstadt Zierikzee, in der niederländischen Provinz Zeeland, als Sohn eines evangelischen Pfarrers. Bereits in jungen Jahren zeigte sich sein Talent für systematische und sorgfältige Beobachtungen. Im Herbst 1882 war in den Niederlanden ein Nordlicht zu beobachten – ein sehr seltenes Phänomen in diesen Breiten, das Zeeman über viele Stunden fasziniert beobachtete. Seine Aufzeichnungen sandte er an einen Physiklehrer, der diese in zwei Artikeln über das Nordlicht in der Zeitschrift Nature erwähnte. Das führte dazu, dass Zeeman einige Zeit darauf einen Brief erhielt, welcher an „Professor Zeeman“ adressiert war und den Nachdruck eines weiteren Artikels enthielt, in dem Zeemans Beobachtungen erwähnt wurden. Diesen Umschlag bewahrte Zeeman sein ganzes ­Leben lang sorgfältig auf.

Nach Abschluss der weiterführenden Schule ging Zeeman an die Universität Leiden, um Physik zu studieren. Dort wurde er nach seinem Abschluss Assistent am Physiklabor. 1893 promovierte Zeeman bei Heike Kamerlingh Onnes mit einer Dissertation zum Kerr-Effekt. Während eines Forschungsaufenthalts in Straßburg wandte er sich der experimentellen Untersuchung der Ausbreitung elektrischer Schwingungen in Flüssigkeiten zu.

weiterlesen

Physik im Alltag

Michael Vogel
06 / 2015 Seite 54

Die bewegte Maus

Optische Computermäuse nutzen das Reflexions- und Streuverhalten ihrer Unterlage für die Cursorbewegung aus. Selbst für Glastische gibt es inzwischen geeignete Modelle.

weiterlesen

Menschen

06 / 2015 Seite 56

Personalien

weiterlesen
Alexander Pawlak
06 / 2015 Seite 59

„Es wäre langweilig, wenn die Physik immer stimmen würde“

weiterlesen

Bücher/Software

Alexander Pawlak
06 / 2015 Seite 60

K. Thorne: The Science of Interstellar

weiterlesen
Alexander Pawlak
06 / 2015 Seite 61

H. Goenner: Albert Einstein

weiterlesen

DPG

Markus Schmitt und Thomas Kotzott
06 / 2015 Seite 62

Wettstreit der Studierenden

weiterlesen
Das Organisationsteam
06 / 2015 Seite 62

19. Deutsche Physikerinnentagung

weiterlesen

Neue Produkte

Ulrich Warring, Tobias Schätz, Jens Kießling, Frank Kühnemann, Niklas Waasem und Thorsten Sprenger
06 / 2015 Seite 74

Im Einsatz für Ionenfänger

Eine neue Laserlichtquelle stellt die benötigten Wellenlängen für Experimente mit unterschiedlichen Atomen, Molekülen und Ionen zur Verfügung.

weiterlesen

Tagungen

Markus Mundt, Jonas Ries und Ana Garcia-Saez
06 / 2015 Seite 69

Advanced Microscopy of Membrane Biophysics

weiterlesen
Cora Uhlemann und Maximilian Düll (für das Organisationsteam)
06 / 2015 Seite 69

Gravity and Light

weiterlesen
Egbert Oesterschulze
06 / 2015 Seite 70

55. Wochenendseminar „PhysikerInnen im Beruf"

weiterlesen
Regine Frank
06 / 2015 Seite 70

From Photonics to Polaritonics

weiterlesen

Weitere Rubriken

06 / 2015 Seite 71

Tagungskalender

weiterlesen

Neue Vakuumpumpe VACUU·PURE® 10

Öl- und abriebfreies Vakuum bis 10⁻³  mbar

VACUUBRAND präsentiert eine trockene und abriebfreie Schraubenpumpe für den Vakuumbereich bis 10⁻³ mbar. Die Pumpe besticht durch ihre wartungsfreie Technologie ohne Verschleißteile und weist ein Saugvermögen von 10 m³/h auf. VACUU·PURE 10 ist die ideale Lösung für Prozesse, bei denen partikel- und kohlenwasserstofffreies Vakuum im Bereich bis 10⁻³ mbar benötigt wird. Mit dieser Eigenschaft deckt die Schraubenpumpe viele Anwendungsgebiete ab – wie beispielsweise Analytik, Vorvakuum für Turbomolekularpumpen oder die Regeneration von Kryopumpen. Sie ermöglicht aber auch Prozesse wie die Vakuumtrocknung, Gefriertrocknung, Wärmebehandlung, Entgasung oder Beschichtung. Da keine Verschleißteile zu tauschen sind und lästige Ölwechsel entfallen, ist ein unterbrechungsfreier Betrieb mit sehr langen Standzeiten möglich.

VACCU PURE 10

Lernen Sie VACUU·PURE 10 kennen.

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum

Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.

*Interior Permanent-Magnet

Pfeiffer HiScroll Pumpen Video

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Sonderhefte

Die Sonder­ausgaben Physics' Best und Best of präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Webinar: Von Transportmessungen in der Festkörperphysik zur Impedanzanalyse in der Elektrotechnik

Nach einer kurzen Einführung in das Lock-in Verstärker Messverfahren erfahren Sie, wie diese Messtechnik bessere und schnellere Transportmessungen ermöglicht.

Mehr Informationen zum Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

Eventbeginn:
03.11.2020 - 12:00
Eventende:
03.11.2020 - 16:00

Mehr Informationen

Sonderhefte

Die Sonder­ausgaben Physics' Best und Best of präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Webinar: Von Transportmessungen in der Festkörperphysik zur Impedanzanalyse in der Elektrotechnik

Nach einer kurzen Einführung in das Lock-in Verstärker Messverfahren erfahren Sie, wie diese Messtechnik bessere und schnellere Transportmessungen ermöglicht.

Mehr Informationen zum Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

Eventbeginn:
03.11.2020 - 12:00
Eventende:
03.11.2020 - 16:00

Mehr Informationen