Beständige Bläschen

Dieser Artikel ist nur für registrierte Nutzer zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.

Erkenntnisse über die Stabilität von Nanoblasen und -tropfen lassen sich vielfältig anwenden.

Eigentlich sollten Nanobläschen im Nu verschwinden, und doch ließen sich mittels Rasterkraftmikroskopie stabile Oberflächen-Nanobläschen identifizieren. Wie können sie bestehen? Der Schlüssel zum Verständnis liegt im sog. „Pinning“ der Kontaktlinie. Die Erkenntnisse von Nanobläschen lassen sich analog auf Nanotröpfchen übertragen – beide besitzen hohe technologische Relevanz.

Der Effekt ist aus dem Alltag bekannt: Bleibt ein Wasserglas, das mit kaltem Leitungswasser gefüllt ist, eine Weile in einem warmen Zimmer stehen, bilden sich kleine Luftbläschen an der Glas­innenseite (Abb. 1). Der Grund dafür liegt darin, dass in Deutschland Leitungswasser mit Luft übersättigt ist und sich Gase in kaltem Wasser viel besser lösen als in warmem Wasser. Wärmt sich das Leitungswasser im Glas bei Zimmertemperatur langsam auf, reduziert sich die Gaslöslichkeit, sodass Bläschen am Glasrand nukleieren. Je nach Glasgröße halten sich diese etwa vier Tage –, wenn man das gefüllte Glas vor Partner und Geschirrspüler retten kann...

Vor rund 15 Jahren gelang es erstmals mit Hilfe der Rasterkraftmikroskopie (Atomic Force Microscopy, AFM), auch nanometerkleine Oberflächenblasen wahrzunehmen, und zwar insbesondere an hydro­phoben Oberflächen in Wasser (Abb. 2) [1]. Die Bläschen erwiesen sich als überraschend langlebig. Eigentlich sollten sie sich im Nu auflösen, da der Laplace-Druck pLaplace = 2σ / R für winzige Blasen divergiert. Hierbei sind R der Blasen­radius und σ die Oberflächenspannung. Für eine Luftblase mit einem Radius von 10 nm liegt die Lebenserwartung im Mikrosekundenbereich (Info­kasten). Noch kleinere Blasen sollten sich noch schneller auflösen. Doch tun sie das nicht!

Detlef Lohse

Lithium-Ionen-Akkus modellieren

Um neue Materialien und Designs von Akkus zu entwickeln, ist ein tieferes Verständnis erforderlich. Hierbei hilft die mathematische Modellierung, die in dem Whitepaper sowie einem Webinar erklärt werden.

Whitepaper lesen!

Korrosion und Korrosionsschutz modellieren

Pro Sekunde werden durch Korrosion weltweit ca. 5 Tonnen Stahl zersetzt, was zu Schäden führt, die jährlich etwa 2 Billionen Euro kosten. Ebenfalls sind zahlreiche Chemieunfälle, Gasexplosionen und Umweltverschmutzungen auf Korrosionsschäden zurückzuführen. Es gibt also gute Gründe, sich intensiv mit effektiven Schutzmaßnahmen zu beschäftigen.

 

Jetzt registrieren!

T5 JobMesse

Starten Sie durch im Neuen Jahr! Besuchen Sie die T5 JobMesse am 25. März im Haus der Wirtschaft in Stuttgart und treffen Sie auf attraktive Arbeitgeber.

Weitere Informationen

Jobbörse

Physiker Jobbörse auf der DPG-Tagung in Dresden.

Weitere Infos

Lithium-Ionen-Akkus modellieren

Um neue Materialien und Designs von Akkus zu entwickeln, ist ein tieferes Verständnis erforderlich. Hierbei hilft die mathematische Modellierung, die in dem Whitepaper sowie einem Webinar erklärt werden.

Whitepaper lesen!

Korrosion und Korrosionsschutz modellieren

Pro Sekunde werden durch Korrosion weltweit ca. 5 Tonnen Stahl zersetzt, was zu Schäden führt, die jährlich etwa 2 Billionen Euro kosten. Ebenfalls sind zahlreiche Chemieunfälle, Gasexplosionen und Umweltverschmutzungen auf Korrosionsschäden zurückzuführen. Es gibt also gute Gründe, sich intensiv mit effektiven Schutzmaßnahmen zu beschäftigen.

 

Jetzt registrieren!

T5 JobMesse

Starten Sie durch im Neuen Jahr! Besuchen Sie die T5 JobMesse am 25. März im Haus der Wirtschaft in Stuttgart und treffen Sie auf attraktive Arbeitgeber.

Weitere Informationen

Jobbörse

Physiker Jobbörse auf der DPG-Tagung in Dresden.

Weitere Infos