Forschung

Weniger Störungen für optische Atomuhren

09.10.2020 - Neues Verfahren zur Unterdrückung von Frequenzverschiebungen entwickelt.

Optische Atomuhren sollen die ungestörte Frequenz eines atomaren Übergangs realisieren. Konsequente Weiter­entwicklungen solcher Atomuhren machen sie zu den genauesten Mess­instrumenten, die heutzutage zur Verfügung stehen. Ein Forschungs­schwerpunkt bildet dabei die Entwicklung von Verfahren zur genauen Kontrolle oder Eliminierung von Frequenz­verschiebungen durch äußere Störeinflüsse. Wissenschaftler der Physikalisch-Technischen Bundes­anstalt (PTB) haben nun eine neue Methode zur Unterdrückung bestimmter richtungs­abhängiger Frequenz­verschiebungen entwickelt. Das Verfahren basiert auf der Rotation eines Magnetfeldes während der Spektroskopie und wurde erfolgreich an einer 171Yb+-Einzel­ionenuhr demonstriert. Dabei wurde der Frequenzfehler durch eine bewusst erzeugte Störung auf unter 0,5 Prozent reduziert.

Für genauere optische Atomuhren ist es zunächst notwendig, die atomaren Übergänge, die Atomuhren als Frequenz­referenz nutzen, bestmöglich gegenüber äußeren Störeinflüssen abzuschirmen. Die aus verbleibenden Störungen resultierenden Frequenz­verschiebungen müssen mit geeigneten Verfahren unterdrückt oder exakt gemessen werden, damit sie die Genauigkeit der Uhr nicht limitieren. Für eine bestimmte Art von Störung mit richtungs­abhängigem Charakter, wie die Quadrupol­verschiebung durch elektrische Feldgradienten, wird eine vollständige Unterdrückung erzielt, indem über drei Messungen gemittelt wird, bei denen das Atom entlang dreier zueinander senkrecht stehender Richtungen orientiert ist. Die innere Symmetrie der atomaren Zustände sorgt dafür, dass das Ergebnis der Mittelung von der äußeren Störung unbeeinflusst ist. Die Orientierung des Atoms entspricht der Richtung eines von außen angelegten Magnet­feldes. Die Forscher haben nun ein neues Verfahren vorgestellt, das die Unterdrückung solcher Frequenz­verschiebungen innerhalb einer einzelnen Messung ermöglicht, sodass also keine Mittelung mehr nötig ist. 

Für die spektro­skopische Präzisions­messung in Atomuhren werden die Atome mit zwei Lichtpulsen angeregt, die von einer Dunkelzeit getrennt sind. Der während dieser Dunkelzeit akkumulierte Phasen­unterschied zwischen dem Atom und der Laserquelle der Lichtpulse stellt die spektroskopische Information dar. Störeinflüsse, die während der Dunkelzeit auf das Atom einwirken, führen zu einer Änderung der Frequenz und damit zu einem anderen Phasen­unterschied. Für die Unterdrückung von richtungs­abhängigen Frequenz­verschiebungen wird nun in der Dunkelzeit das von außen angelegte Magnetfeld langsam und kontinuierlich um eine feste Achse gedreht, sodass sich über die gesamte Dunkelzeit gesehen ein Mittelwert von Null für die Frequenz­verschiebung einstellt. Neben der Unterdrückung innerhalb einer einzigen Messung besteht ein großer Vorteil der Methode darin, dass die Orientierung des Atoms während der Lichtpulse beliebig gewählt werden kann. Ähnliche Verfahren sind bereits aus der Kernspinresonanz-Spektro­skopie bekannt, bei denen die zu untersuchende Probe mit einem festen, „magischen“ Winkel gegenüber einem äußeren Magnetfeld gedreht wird.

Die neue Methode wurde erfolgreich an einer 171Yb+-Einzel­ionenuhr an der PTB getestet. Ein starker elektrischer Feldgradient wurde künstlich erzeugt und die hervorgerufene Frequenz­verschiebung mithilfe der Magnetfeldrotation um mehr als zwei Größen­ordnungen unterdrückt. Damit können Störungen dieser Art, die zum Beispiel durch Ladungen auf Isolatoren im Inneren der Vakuumapparatur auftreten, so weit unterdrückt werden, dass sie beim Betrieb der Atomuhr vernach­lässigbar sind. Die einfache Umsetzung des Verfahrens nur mithilfe eines dynamischen Magnetfeldes ermöglicht eine direkte Übertragung auf weitere Hoch­präzisions-Experimente.

PTB / JOL

Weitere Infos

Neue Vakuumpumpe VACUU·PURE® 10

Öl- und abriebfreies Vakuum bis 10⁻³  mbar

VACUUBRAND präsentiert eine trockene und abriebfreie Schraubenpumpe für den Vakuumbereich bis 10⁻³ mbar. Die Pumpe besticht durch ihre wartungsfreie Technologie ohne Verschleißteile und weist ein Saugvermögen von 10 m³/h auf. VACUU·PURE 10 ist die ideale Lösung für Prozesse, bei denen partikel- und kohlenwasserstofffreies Vakuum im Bereich bis 10⁻³ mbar benötigt wird. Mit dieser Eigenschaft deckt die Schraubenpumpe viele Anwendungsgebiete ab – wie beispielsweise Analytik, Vorvakuum für Turbomolekularpumpen oder die Regeneration von Kryopumpen. Sie ermöglicht aber auch Prozesse wie die Vakuumtrocknung, Gefriertrocknung, Wärmebehandlung, Entgasung oder Beschichtung. Da keine Verschleißteile zu tauschen sind und lästige Ölwechsel entfallen, ist ein unterbrechungsfreier Betrieb mit sehr langen Standzeiten möglich.

VACCU PURE 10

Lernen Sie VACUU·PURE 10 kennen.

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum

Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.

*Interior Permanent-Magnet

Pfeiffer HiScroll Pumpen Video

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Webinar: Von Transportmessungen in der Festkörperphysik zur Impedanzanalyse in der Elektrotechnik

Nach einer kurzen Einführung in das Lock-in Verstärker Messverfahren erfahren Sie, wie diese Messtechnik bessere und schnellere Transportmessungen ermöglicht.

Mehr Informationen zum Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

Eventbeginn:
03.11.2020 - 12:00
Eventende:
03.11.2020 - 16:00

Mehr Informationen

Webinar: Von Transportmessungen in der Festkörperphysik zur Impedanzanalyse in der Elektrotechnik

Nach einer kurzen Einführung in das Lock-in Verstärker Messverfahren erfahren Sie, wie diese Messtechnik bessere und schnellere Transportmessungen ermöglicht.

Mehr Informationen zum Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

Eventbeginn:
03.11.2020 - 12:00
Eventende:
03.11.2020 - 16:00

Mehr Informationen