Technologie

Wendelstein 7-X: die Sternenmaschine läuft

27.02.2019 - Wendelstein 7-X ist weltweit größte Fusionsanlage vom Typ Stellarator und soll die Kraftwerkseignung dieser Bauweise untersuchen.

Seit Mitte des 20. Jahrhunderts träumt die Wissenschaft davon, die Verschmelzung leichter Wasserstoffkerne in der Sonne für die irdische Energieproduktion nutzbar zu machen. Das verspricht klimafreundliche Kraftwerke, die mit wenigen Gramm Brennstoff auskommen. Ein Fusionskraftwerk wäre eine kerntechnische Anlage, aber es würde seinen Brennstoff selbst erbrüten und keinen tonnenschweren kerntechnischen Abfall produzieren, der Jahrtausende gelagert werden muss. Anders als bei der heutigen Kerntechnik, die auf Kernspaltung beruht, wären die Risiken und Folgen sehr überschaubar. Und das Verbrennen von Kohle ist langfristig erheblich riskanter für unseren Planeten.

Das ist das große Versprechen der Fusionsforschung. Allerdings lässt sich das Verschmelzen leichter Wasserstoff-Atomkerne, wie es in der Sonne abläuft, nicht auf der Erde kopieren, denn dies geschieht bei einem enormen Plasmadruck von etwa zweihundert Milliarden Erdatmosphären. Deshalb wählt man eine alternative Fusionsreaktion, in der die schweren Wasserstoffisotope Deuterium und Tritium zu Helium verschmelzen. Dabei setzt 1 g Brennstoff  90 MWh Energie frei, was der Verbrennungswärme von 11 t Kohle entspricht. Bei der Reaktion in einem zukünftigen Kraftwerk tragen die Heliumkerne etwa 20 Prozent der freiwerdenden Energie und heizen damit das Plasma nach. Die bei der Fusion frei werdenden Neutronen transportieren die übrigen 80 Prozent zur Wand des Plasmagefäßes. Dort wird die Fusionswärme auf ein Kühlmittel übertragen, das Turbinen eines elektrischen Generators antreibt.

Diese alternative Fusionsreaktion erfordert zwar eine Zündtemperatur von 100 Millionen Grad Celsius und Betriebstemperaturen bis zu 300 Millionen Grad im Plasma. Dafür benötigt sie im Betrieb nur wenige Atmosphären Druck. Das elektrisch geladene Plasma lässt sich daher in geeignet geformten Magnetfeldern einschließen. Ein direkter Kontakt mit einer materiellen Gefäßwand verbietet sich bei den hohen Temperaturen. Allerdings ist der Grund weniger eine etwaige Beschädigung der Wand, sondern das ultradünne Plasma würde bei Wandkontakt sofort abkühlen und die Fusionsreaktion stoppen. Ein GAU mit Kernschmelze wie in Fukushima ist ausgeschlossen.

Bei den Plasmaexperimenten, die zur Vorbereitung laufen, haben sich zwei verschiedene Bauweisen durchgesetzt: Tokamak und Stellarator. Der Tokamak funktioniert im Prinzip wie ein großer Transformator, bei dem das ringförmige Plasma eine der beiden Spulen bildet. In seinem Innern muss allerdings ein starker Ringstrom fließen, der es wie ein magnetischer Schlauch zusammenhält. Der starke Ringstrom und der wegen des Transformatorprinzips gepulste Betrieb sind zwei grundsätzliche Nachteile des Tokamaks, an deren Überwindung geforscht wird.

Ein Stellarator hingegen ist als reiner Magnetkäfig für einen Dauerbetrieb geeignet. Allerdings erfordert dies ein sehr komplex geformtes Magnetfeld, was zu einer entsprechend komplexen Spulengeometrie führt. Erst in den frühen 1980er-Jahren gelang es am Im Max-Planck-Institut für Plasmaphysik (IPP) in Garching, ein „Advanced Stellarator (AS)“-Konzept zu entwickeln, das das heiße Plasma im Prinzip perfekt genug für eine Fusionsreaktion einschließen kann. Das kleine Plasma-Experiment Wendelstein 7-AS bewies grundsätzlich, dass das Konzept funktioniert. Auf dieser Basis baute das IPP in Greifswald das bislang weltgrößte Stellarator-Experimente Wendelstein 7-X auf. Es soll nun – noch ohne Fusionsreaktion  – demonstrieren, dass ein großer Stellarator das heiße Plasma gut genug für ein zukünftiges Fusionskraftwerk einschließen kann.

Drei Messkampagnen in verschiedenen Ausbaustufen absolvierte Wendelstein 7-X bereits erfolgreich. Derzeit wird in die Anlage eine hochkomplexe Wasserkühlung eingebaut, die halbstündige Einschlüsse des bis 100 Millionen Grad heißen Wasserstoffplasmas ermöglichen soll. Isabella Milch vom IPP stellt die bislang sehr erfolgreichen Läufe von Wendelstein 7-X detailliert in Physik in unserer Zeit vor. Den Artikel finden Sie hier zum freien Download.

 

Originalveröffentlichung

I. Milch, Wendelstein 7‐X im Betrieb, Phys. Unserer Zeit 50(1), 28 (2019). https://doi.org/10.1002/piuz.201901524

 

Die nächste Generation der effizienten Lösung für die Gasanalyse von Pfeiffer Vacuum

OmniStar und ThermoStar sind kompakte Benchtop-Analysegeräte für Probengase die unter Atmosphärendruck vorliegen. Sie sind die perfekte Komplettlösung zur Gasanalyse, insbesondere bei chemischen Prozessen, in der Halbleiterindustrie,

Metallurgie, Fermentation, Katalyse, Gefriertrocknung und bei der Umweltanalyse. Die Analysesysteme bestehen aus Einlasssystem, Massenspektrometer PrismaPro, trocken verdichtender Membranvakuumpumpe MVP und Turbopumpe HiPace.

 

Pfeiffer Video

Erfahren Sie mehr über Analysegeräte

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum

Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.

*Interior Permanent-Magnet

Pfeiffer HiScroll Pumpen Video

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

On-demand-Webinar: Von Transportmessungen in der Festkörperphysik zur Impedanzanalyse in der Elektrotechnik

Nach einer kurzen Einführung in das Lock-in Verstärker Messverfahren erfahren Sie, wie diese Messtechnik bessere und schnellere Transportmessungen ermöglicht.

Mehr Informationen zum on-demand-Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

Eventbeginn:
03.11.2020 - 12:00
Eventende:
03.11.2020 - 16:00

Mehr Informationen

On-demand-Webinar: Von Transportmessungen in der Festkörperphysik zur Impedanzanalyse in der Elektrotechnik

Nach einer kurzen Einführung in das Lock-in Verstärker Messverfahren erfahren Sie, wie diese Messtechnik bessere und schnellere Transportmessungen ermöglicht.

Mehr Informationen zum on-demand-Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

Eventbeginn:
03.11.2020 - 12:00
Eventende:
03.11.2020 - 16:00

Mehr Informationen