05.02.2019

Virtuelle Linse für die Röntgenmikroskopie

Fourier-Ptychografie erstmals mit Röntgenlicht realisiert.

Mit Röntgenmikroskopen blicken Forscher am Paul Scherrer Institut PSI in Computerchips, Katalysatoren, Knochenstückchen oder Hirngewebe. Die kurze Wellenlänge des Röntgenlichts macht Strukturen im Nanometerbereich sichtbar. Wie bei einem normalen Mikroskop trifft das Licht auf die Probe und wird von ihr abgelenkt. Eine Linse sammelt dieses gestreute Licht und erzeugt ein vergrößertes Bild auf der Kamera. Allerdings streuen winzige Strukturen das Licht in sehr grossen Winkeln. Will man sie im Bild auflösen, braucht es entsprechend eine große Linse. „Doch es ist äußerst schwierig, solch grosse Linsen herzustellen“, sagt Klaus Wakonig, Physiker am PSI: „Im sichtbaren Bereich gibt es Linsen, die sehr große Streuwinkel einfangen können. Im Röntgenbereich hingegen ist dies aufgrund der schwachen Wechselwirkung mit dem Material der Linse komplizierter. Infolgedessen können meist nur sehr kleine Winkel eingefangen werden oder die Linsen sind sehr ineffizient.“

Klaus Wakonig und Ana Diaz haben gemein­sam mit weiteren PSI-Forschern...
Klaus Wakonig und Ana Diaz haben gemein­sam mit weiteren PSI-Forschern erstmalig das Prinzip der Fourier-Ptycho­grafie auf die Röntgen­mikroskopie übertragen. (Bild: M. Fischer, PSI)

Die neue, von Wakonig und seinen Kollegen entwickelte Methode umgeht dieses Problem. „Das Ergebnis ist so, als ob wir mit einer großen Linse gemessen hätten“, erklärt der Forscher. Das Team verwendet eine kleine, aber effiziente Linse, wie sie üblicherweise in der Röntgenmikroskopie eingesetzt wird, und verschiebt diese über einen Bereich, den eine ideale Linse abdecken würde. Somit entsteht virtuell eine große Linse. „In der Praxis gehen wir mit der Linse zu verschiedenen Punkten und nehmen dort jeweils ein Bild auf“, erklärt Wakonig. „Dann verwenden wir Computeralgorithmen, um alle Bilder zu verbinden und so eine hochaufgelöste Aufnahme zu erzeugen.“

Normalerweise vermeidet man, Linsen in Instrumenten von der optischen Achse weg zu bewegen, da dies die Abbildung verfälschen kann. Doch da die Forscher die genaue Position der Linse kennen und viele nah beieinander liegende Punkte beleuchten, können sie rekonstruieren, wie das Licht gestreut wurde und wie die Probe ausgesehen hat. Das Verfahren heißt Fourier-Ptychografie und wird seit 2013 für die Mikroskopie im sichtbaren Bereich verwendet. In ihren Experimenten konnten die Forscher nun erstmals dieses Prinzip auf die Röntgenmikroskopie übertragen. „Soweit wir wissen, wurde bisher keine erfolgreiche Umsetzung der Fourier-Ptychografie mit Röntgenlicht gemeldet“, berichten die Forscher.

Die neue Methode liefert nicht nur eine bessere Auflösung, sondern auch zwei sich ergänzende Bildinformationen. Einerseits wird wie bei einer Handy-Kamera gemessen, wie viel Licht vom abzubildenden Objekt absorbiert wird. Andererseits werden auch der Absorptions- und Phasenkontrast bestimmt. „Unsere Methode liefert den Phasenkontrast, der sonst nur schwer zu erhalten ist, praktisch gratis mit“, sagt Ana Diaz. „Dadurch ist die Qualität der Bilder viel besser.“ Der Phasenkontrast ermöglicht es sogar, Rückschlüsse auf die Materialeigenschaften der untersuchten Probe zu ziehen, was mit normaler Bildgebung in der Regel nicht gelingt.

In ihren Experimenten war die untersuchte Probe ein Detektorchip. In Zukunft könnte die neue Methode zum Beispiel aufzeigen, wie ein Katalysator bei hohen Temperaturen arbeitet, wenn man ein Gas hinzufügt, oder wann und wie ein Metall unter Druck bricht. Aber auch Gewebe und Zellverbände könnten damit besser untersucht werden. Davon erhoffen sich die Forscher neue Erkenntnisse über die Entstehung von Krankheiten wie Alzheimer oder Hepatitis. „Biologische Proben haben normalerweise keinen guten Absorptionskontrast. Hier sorgt der Phasenkontrast für eine wesentliche Steigerung der Bildqualität“, sagt Diaz. Zudem vermuten die Forscher, dass die Fourier-Ptychografie schonender ist als bisherige Verfahren. „Ein Vergleich mit der normalen Röntgenmikroskopie deutet darauf hin, dass die neue Methode eine geringere Strahlendosis erfordert, weil sie effizienter ist“, sagt Wakonig. „Dies könnte für Untersuchungen von biologischen Proben besonders interessant sein.“

Aufgebaut hat das Forscherteam seine Demonstrationsanlage an der Strahllinie cSAXS der Synchrotron Lichtquelle Schweiz SLS. „Die Experimente sind zurzeit noch recht aufwendig und brauchen viel Zeit“, sagt Diaz. Damit das neue Verfahren funktioniert, müssen die verwendeten Röntgenstrahlen kohärent sein. Solche Experimente erfordern derzeit Großforschungsanlagen wie die SLS. Wakonig untersucht aber auch, ob sich das Verfahren mit weniger Kohärenz realisieren lässt. Könnte man Proben auf diese Weise mit einer üblichen Laborquelle für Röntgenstrahlung untersuchen, würden sich viele weitere Anwendungsbereiche erschließen.

PSI / JOL

Weitere Infos

 

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen