Solar Orbiter liefert erste Bilder der Sonne

Erprobungsphase aller Instrumente der Raumsonde erfolgreich abgeschlossen.

Vor fünf Monaten startete Solar Orbiter seine Reise zur Sonne. Zwischen Mitte März und Mitte Juni wurden die zehn Instrumente an Bord eingeschaltet und getestet, zudem führte die Raumsonde ihre erste Annäherung an die Sonne durch. Kurz darauf konnten die inter­nationalen Wissen­schafts­teams zum ersten Mal alle Instrumente gemeinsam prüfen.

Abb.: Das Erscheinungsbild der Sonne bei einer Wellenlänge von 17 Nanometern,...
Abb.: Das Erscheinungsbild der Sonne bei einer Wellenlänge von 17 Nanometern, die im extremen ultravioletten Bereich des elektromagnetischen Spektrums liegt. (Bild: Solar Orbiter, EUI Team (ESA & NASA) / CSL / IAS / MPS / PMOD, WRC / ROB / UCL, MSSL)

Neben dem sichtbaren Licht sendet die Sonne auch Röntgen­strahlung aus, vor allem während Sonnen­eruptionen. Mit dem Röntgen­teleskop STIX, dem „Spectro­meter/Tele­scope for Imaging X-Ray“, lassen sich besonders heiße Regionen beobachten, die nur während Sonnen­eruptionen entstehen. Der Rest der Sonne ist im Röntgen­licht nicht sichtbar, daher braucht STIX ein eigenes System, dass die Orientie­rung zur Sonne präzise misst. Ein Forscher­team am Leibniz-Institut für Astro­physik Potsdam AIP entwickelte und baute das STIX Aspect System SAS und betreibt es auch während der Mission. Nur damit können die Röntgen­bilder mit den Aufnahmen der anderen Instrumente in Beziehung gesetzt werden.

Die jetzt veröffent­lichten ersten Bilder, die Solar Orbiter von der Sonne aufge­nommen hat, enthüllen bislang unge­kannte Details. Die Aufnahmen zeigen zahlreiche kleine Sonnen­eruptionen, die aufgrund ihres Erscheinungs­bilds „Lager­feuer“ genannt werden. Bereits jetzt lässt sich daran das enorme Potenzial der Mission erkennen, deren wissen­schaft­liche Phase im November 2021 beginnt und bis 2029 andauert.

„Alle Instrumenten­teile von STIX, wie die 32 Röntgen­detektoren, funktionieren wie geplant. Wir Sonnen­physiker am AIP waren natürlich sehr gespannt. Zu unserer Freude sehen wir, dass SAS wie erwartet gute Daten liefert. Während der Erprobungs­phase konnten wir erkennen, wie sich der Sonnen­durch­messer stetig vergrößert, da sich die Sonde der Sonne nähert“, erläutert Gott­fried Mann, Leiter des STIX-Teams am AIP.

Solar Orbiter soll die Sonne in den nächsten Jahren umkreisen und sich ihr bis auf einen Abstand von 42 Millionen Kilometern nähern. Die Sonde trägt sechs Fern­erkundungs­instrumente und Teleskope, die die Sonne und ihre Umgebung abbilden, sowie vier In-situ-Instrumente, die die Eigen­schaften in der Umgebung der Sonde messen. Durch den Vergleich der Daten aus beiden Instrumenten­sätzen erhält die Wissen­schaft Einblicke in die Entstehung des Sonnenwinds.

Während Ausbrüchen auf der Sonne wird eine enorme Menge hoch­energe­tischer Elektronen erzeugt. Diese Elektronen spielen eine wichtige Rolle, da sie einen großen Teil der bei dem Ausbruch frei­ge­setzten Energie tragen. Das AIP ist mit dem Energetic Particle Detektor EPD an einem weiteren Instrument beteiligt. EPD kann direkt diese Elektronen messen, wenn sie auf die Sonde treffen. Durch die vom DLR geförderte Teilnahme an den Instrumenten STIX und EPD wird das AIP in den nächsten Jahren in der Lage sein, die Prozesse der hoch­energe­tischen Elektronen in ihrer Gesamtheit zu erforschen. Die Sonnen­aktivität – auch als Weltraum-Wetter bezeichnet – kann unser Klima und die technische Zivili­sa­tion stark beein­flussen. Solar Orbiter hat das Ziel, die Prozesse auf der Sonne und ihre Aus­wirkungen auf unsere Erde zu unter­suchen.

AIP / RK

Weitere Infos

 

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen