17.08.2018

Simulierte Antiskyrmionen

Neue Ergebnisse könnten einen Hinweis für das Materie-Antimaterie-Rätsel liefern.

Skyrmionen sind magne­tische Nano­partikel, die als vielver­sprechende Kandidaten für neue Techno­logien zur Daten­speicherung und Informations­verarbeitung gelten. Physiker haben nun ein neues Verhalten entdeckt, an dem die Anti­teilchen von Skyrmionen in einem ferro­magnetischen Material beteiligt sind. Die Erkennt­nisse basieren auf mondernsten Computer­simulationen, mit denen sich die magne­tischen Eigen­schaften von Materialien, die nur wenige Nanometer dick sind, sehr genau nachbilden lassen. An der Forschungs­arbeit waren Wissen­schaftler der Uni­versität Uppsala, der Christian-Albrechts-Univer­sität zu Kiel, der Johannes Gutenberg-Univer­sität Mainz JGU und der Univer­sität Paris-Saclay beteiligt.

Abb.: Materie und Antimaterie im magnetischen Nanokosmos: Ein Gas aus Skyrmionen (lila) und Antiskyrmionen (grün), das aus den trochoidalen Bewegungen eines einzigen Antiskyrmions entstanden ist. (Bild: Joo-Von Kim)

Die Bewegung von Elektronen in Schalt­kreisen bildet die Grundlage für nützliche Anwen­dungen in der Elektronik. Aber gelten die Leitsätze auch für Positronen, die Anti­teilchen der Elektronen? Abgesehen von dem seltenen natür­lichen Vorkommen der Anti­teilchen legen die Grundlagen der Elektro­dynamik nahe, dass bei positiver Ladung im Prinzip alles genauso verläuft wie bei den negativ geladenen Elektronen, nur mit anderem Vorzeichen. Ob sich Skyrmionen als magne­tische Nano­teilchen ähnlich verhalten, ist bisher nicht geklärt.

Die Wirbel in magne­tischen Materialien breiten sich über wenige Nano­meter aus und sind in extrem dünnen magne­tischen Filmen zu finden. So wie Kugeln und Kreisringe verschiedene Topo­logien aufweisen, besitzen auch Skyrmionen eine bestimmte Eigenschaft, die topo­logische Ladung, die eine ähnliche Rolle spielt wie elek­trische Ladungen. Wenn beispiels­weise eine angelegte Kraft die Skyrmionen nach links ablenkt, dann würde dieselbe Kraft Antiskyrmionen nach rechts ablenken. Seit den ersten experi­mentellen Beo­bachtungen im Jahr 2009 stehen Skyrmionen im Fokus inten­siver Forschungen, weil sie neue Möglich­keiten der Daten­speicherung und Informations­verarbeitung eröffnen.

Jetzt haben die Wissen­schaftler gezeigt, dass in Ferromagnet-Nano­schichten, in denen sowohl Skyrmionen als auch Anti­skyrmionen vorhanden sind, noch weitaus komplexere Phänomene auftreten können. Sie verwendeten modernste Simulations­techniken, um die magne­tischen Eigen­schaften und die Dynamiken in solchen Filmen zu berechnen, und unter­suchten damit, wie Skyrmionen und Anti­skyrmionen sich verhalten, wenn elek­trische Ströme angelegt werden, die eine Kraft auf die Teilchen ausüben. Bei niedrigen Strömen zeigt sich das erwartete Verhalten: Entgegen­gesetzte topo­logische Ladungen werden durch die gleiche Kraft in entgegen­gesetzte Richtungen abgelenkt. Wird der Strom allerdings schrittweise erhöht, sind die Bewegungen nicht mehr spiegel­verkehrt. Während sich Skyrmionen weiterhin geradlinig bewegen, nehmen Anti­skyrmionen gekrümmte Bewegungs­bahnen an, zunächst nur kurz­zeitig, dann bei einer weiteren Erhöhung des elek­trischen Stroms permanent. Die Bahn ähnelt dann der Bahn von Trochoiden, ver­gleichbar mit der Kurve des Pedals an einem Fahrrad, das auf einem geraden Weg entlang­fährt. Diese auffäl­ligen Ergeb­nisse zeigen, dass sich entgegen­gesetzte topo­logische Ladungen tat­sächlich sehr unter­schiedlich verhalten können.

Aber es gab noch weitere Über­raschungen. Bei einer Erhöhung der Energie, die durch die angelegten Ströme ins System eingebracht wird, kann die trochoidale Bewegung dazu führen, dass sich periodisch Skyrmion-Anti­skyrmion-Paare bilden. Wegen ihrer unter­schiedlichen Bewe­gungsart entfernen sich die ent­standenen Skyrmionen, während Anti­skyrmionen mit ihrer trochoidalen Bewegung eher in dem Bereich verbleiben, in dem sie erzeugt wurden. Bemerkens­werterweise wird jedes erzeugte Anti­skyrmion zu einer neuen Quelle von Skyrmion-Anti­skyrmion-Paaren, was zu einer Vermehrung der Partikel führt. „Es ist in etwa so, als ob wir ein einziges Positron durch ein starkes Magnet­feld schicken und dadurch ein Gas von Elektronen und Positronen erhalten würden“, erklärt Bertrand Dupé von der Inter­disciplinary Spintronics Research Group an der Univer­sität Mainz.

Die Tragweite dieser theo­retischen Arbeit ist möglicher­weise sehr weitreichend. Im Hinblick auf künftige Techno­logien legt die Studie nahe, dass Anti­skyrmionen als eine stetige Quelle für Skyrmionen dienen könnten. Dies wäre für alle künftigen Anwen­dungen, die Skyrmionen zur Übertragung und Speicherung von Daten verwenden, von ent­scheidender Bedeutung. Darüber hinaus bestimmt die trochoidale Bewegung die absolute Geschwin­digkeits­begrenzung solcher topo­logischen Ladungen – ein wich­tiger Parameter, falls in Zukunft Schalt­kreise mit Hilfe von Skyrmionen entwickelt werden.

Auf einer noch grund­legenderen Ebene könnte die Arbeit Hinweise geben, um ein großes Rätsel der Kosmo­logie zu lösen, nämlich die Frage, warum es im Uni­versum mehr Materie als Antimaterie gibt. Wegen der Asymmetrie in der Bewegung von Skyrmionen und Anti­skyrmionen zeigen die Simu­lationen, dass es nach der Erzeugung von Paaren immer einen Überschuss an Skyrmionen gibt. Das Ungleich­gewicht zwischen Materie und Anti­materie in diesen ferro­magnetischen Filmen ist also eine natürliche Folge ihrer Dynamik bei hohen Energien. „Zumindest im magne­tischen Nanokosmos kann Materie auf natür­liche Weise aus einem einzigen Anti­teilchen entstehen“, merkt Dupé an.

JGU / JOL

Anbieter des Monats

Quantum Design GmbH

Quantum Design GmbH

Forschung lebt von Präzision. Seit über 40 Jahren steht Quantum Design für innovative Messtechnik auf höchstem Niveau – entwickelt in Kalifornien, betreut weltweit. Unsere Systeme sind der Goldstandard in der Materialcharakterisierung und ermöglichen tiefe Einblicke in die magnetischen, thermischen und optischen Eigenschaften von neuen Materialien.

Content Ad

Auf der Suche nach dem besten Signal-Rausch-Verhältnis?

Auf der Suche nach dem besten Signal-Rausch-Verhältnis?

Bringen Sie Ihre Messungen auf ein neues Level - wie weltweit bereits mehr als 1000 Labore vor Ihnen. Der MFLI Lock-In Verstärker setzt Maßstäbe in der Signalanalyse und in einem herausragenden Signal-Rausch-Verhältnis.

Meist gelesen

Themen