Forschung

Schnittstelle aus photonischen Kristallen

11.10.2019 - Modul verbindet Lichtquellen für einzelne Photonen mit nanophotonischen Netzwerken.

Weltweit tüfteln Forscher intensiv an den einzelnen Bauteilen von Quanten­technologien – dazu gehören Schaltkreise, die Infor­mationen mithilfe von Lichtquanten anstelle von Elektrizität weitergeben, aber auch Lichtquellen, die einzelne Photonen produzieren können. Eine besondere Heraus­forderung ist es, diese beiden Bausteine miteinander zu verbinden und so integrierte quanten­optische Schaltkreise auf Chips herzustellen. Wissen­schaftler der Westfälischen Wilhelms-Universität Münster WWU haben jetzt eine Schnittstelle entwickelt, die Lichtquellen für einzelne Photonen mit nano­photonischen Netzwerken verbindet. Sie besteht aus photonischen Kristallen – nano­strukturierten Materialien, die beim Durchgang von Licht einen bestimmten Wellenlängen­bereich verstärken können.

Solche photonischen Kristalle finden in vielen Forschungs­bereichen Anwendung, waren zuvor aber noch nicht für diese Art von Schnittstellen optimiert worden. Die Wissen­schaftler versprechen sich von den neu entwickelten photo­nischen Kristallen, dass sie sich unkompliziert mit gängigen Nanofabrikations­methoden reproduzieren lassen. ;„Mit unserer Arbeit zeigen wir, dass komplexe Quanten­technologien nicht nur in hoch spezialisierten Laboren und in einmaligen Versuchen hergestellt werden können“, sagt Nanophysiker Carsten Schuck, der die Studie gemeinsam mit Doris Reiter aus der Festkörper­theorie leitete. Die Ergebnisse könnten dazu beitragen, Quanten­technologien skalierbar zu machen.

Für ihre Studie betrachteten die Forscher Quantenemitter, die in Nanodiamanten eingebettet sind und Photonen aussenden, wenn sie mit elektro­magnetischen Feldern angeregt werden. Um die angestrebten Schnittstellen herzustellen, war es das Ziel der Forscher, optische Strukturen zu entwickeln, die auf die Wellenlänge der Quantenemitter zuge­schnitten sind. Hohlräume beziehungsweise Löcher in photo­nischen Kristallen eignen sich dazu, Licht in winzigen Volumina einzusperren und mit Materie, wie hier den Nanodiamanten, wechselwirken zu lassen. Physik­doktorand Jan Olthaus in der Nachwuchsgruppe von Doris Reiter entwickelte theoretische Konzepte und spezielle computer­gestützte Simulations­techniken, um die Designs für diese photonischen Kristalle zu berechnen.

Die theoretisch entwickelten Designs stellten Physiker in der Nachwuchs­forschergruppe um Carsten Schuck am Center for NanoTechnology und Center for Soft Nanoscience her. Doktorand Philipp Schrinner fertigte die Kristalle aus einem dünnen Film aus Siliziumnitrid. Er nutzte dazu unter anderem moderne Elektronen­strahlschreiber und spezielle Ätzverfahren an den Geräten der Münster Nanofabrication Facility und schaffte es, die Kristalle in hoher Güte direkt auf dem Basismaterial Silizium­dioxid herzustellen. Bei der Strukturierung der Kristalle variierten die Forscher zum einen die Größe und Anordnung der Löcher und zum anderen die Breite des Wellen­leiters, auf dem die Löcher platziert waren. Die Mess­ergebnisse zeigten, dass sich photonische Kristalle, die eine spezielle Variation der Lochgröße aufwiesen, am besten für die Schnitt­stellen eigneten.

„Unsere Zusammenarbeit zwischen theoretischen und experi­mentellen Physikern ist ein Idealfall in der physikalischen Forschung. Solche Koopera­tionen sind nicht immer einfach, da sich unsere Arbeitsweisen oft gravierend unterscheiden. Daher freuen wir uns umso mehr, dass die Kooperation zwischen unseren beiden Nachwuchs­gruppen so gut aufgegangen ist“, sagt Doris Reiter. „Das Besondere an unserer Arbeit ist, dass unsere Designs keine zusätzlichen Verarbeitungs­schritte erfordern, sondern mit der etablierten Dünnschichttechnologie für integrierte photonische Schaltungen kompatibel sind“, sagt Carsten Schuck. Das ist bei der Entwicklung von komplexen Quanten­technologien nicht selbst­verständlich, denn häufig gelingt es zwar Forschern, einen wichtigen Baustein einmalig in hoher Güte herzustellen, aber nicht, den gleichen Baustein in vielfacher Ausführung erneut zu produzieren.

In ihren nächsten Schritten wollen die Wissenschaftler die in den Nano­diamanten eingebetteten Quanten­emitter an bestimmten Punkten der photonischen Kristalle positionieren, um die Studien­ergebnisse anzuwenden. Dazu entwickelt die Arbeitsgruppe um Carsten Schuck bereits eine spezielle Nanofabrikations­technik, die zum Beispiel einen hundert Nanometer kleinen Diamanten mit einer Genauigkeit von weniger als fünfzig ;Nanometern platzieren kann. Die Physiker um Doris Reiter wollen die Studien auf andere Material­systeme und komplexere Geometrien der photonischen Kristalle ausweiten und zum Beispiel elliptische statt runder Löcher einsetzen.

WWU Münster / JOL

Weitere Infos

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum

Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.

*Interior Permanent-Magnet

Pfeiffer HiScroll Pumpen Video

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Die äußerst leisen, kompakten, ölfreien Pumpen

Die Modelle der neuen Scrollpumpenbaureihe HiScroll von Pfeiffer Vacuum sind ölfreie, hermetisch dichte Vakuumpumpen. Die kompakte Bauweise sowie leiser und vibrationsarmer Betrieb zeichnen die Neuentwicklungen besonders aus.

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum in 3D!

 

HiScroll FunktionsVideo

 

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Bleistift, Papier und die eine Idee, die die Zukunft verändert

Quantentechnologie, künstliche Intelligenz, additive Fertigung: Michael überführt neueste Erkenntnisse in fortschrittliche Technologien bei ZEISS. Was ihn antreibt? „Einfluss darauf nehmen, wie unsere Gesellschaft lebt und arbeitet.“

Mehr Informationen

Bleistift, Papier und die eine Idee, die die Zukunft verändert

Quantentechnologie, künstliche Intelligenz, additive Fertigung: Michael überführt neueste Erkenntnisse in fortschrittliche Technologien bei ZEISS. Was ihn antreibt? „Einfluss darauf nehmen, wie unsere Gesellschaft lebt und arbeitet.“

Mehr Informationen