Forschung

Schnelle Nanodrähte unter Zug

09.02.2022 - Nanodrähte unter Spannung zeigen hohe Elektronenbeweglichkeit und Potenzial für schnelle Transistoren.

Kleinere Chips, schnellere Rechner, weniger Energieverbrauch. Neue Konzepte auf der Basis von Halbleiter-Nanodrähten sollen Transistoren in mikro­elektronischen Schaltkreisen besser und effizienter machen. Wichtig dafür ist die Elektronen­beweglichkeit: Je schneller die Elektronen in den winzigen Drähten beschleunigen können, desto schneller kann ein Transistor schalten und desto weniger Energie benötigt er. Einem Forschungsteam vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR), der TU Dresden und der NaMLab gGmbH ist nun der experimentelle Nachweis gelungen, dass die Elektronenbeweglichkeit in Nanodrähten deutlich steigt, wenn die Hülle den Drahtkern unter Spannung setzt.

 

Nanodrähte verfügen über eine besondere Eigenschaft: Die ultradünnen Drähte lassen sich sehr stark spannen, ohne dass Defekte in der Kristallstruktur des Materials entstehen. Die Materialien selbst sind nicht ungewöhnlich. Galliumarsenid etwa wird verbreitet in der industriellen Fertigung eingesetzt und ist für eine hohe intrinsische Elektronen­beweglichkeit bekannt.

Um diese Beweglichkeit noch weiter zu steigern, fertigte das Dresdner Team Nanodrähte aus einem Gallium­arsenid-Kern und einer Hülle aus Indium-Aluminium­arsenid. Durch die unterschiedlichen chemischen Zutaten weisen die Kristall­strukturen in Hülle und Kern leicht unterschiedliche Gitter­abstände auf. Dadurch übt die Hülle eine hohe mechanische Spannung auf den viel dünneren Kern aus. Das Galliumarsenid im Kern verändert seine elektronischen Eigenschaften. „Wir beeinflussen die effektive Masse der Elektronen im Kern. Die Elektronen werden quasi leichter und sind dadurch beweglicher“, erläutert Emmanouil Dimakis, Wissenschaftler am HZDR-Institut für Ionenstrahl­physik und Material­forschung sowie Initiator der jetzt veröffentlichten Studie.

Anfangs war dies noch eine theoretische Vorhersage. In der jetzt veröffentlichten Studie gelang den Forschern der experimentelle Nachweis. „Wir wussten, dass die Elektronen in der gespannten Kristallstruktur im Kern noch beweglicher sein sollten. Offen war aber die Frage, wie sehr die Hülle der Drähte die Elektronen­bewegung im Kern stört. Der Kern ist extrem dünn, so dass die Elektronen mit der Hülle wechselwirken und an dieser gestreut werden können“, so Dimakis. Eine Serie von Messungen und Tests belegte diesen Effekt: Trotz Wechselwirkung mit der Hülle bewegten sich Elektronen im Kern der untersuchten Drähte bei Raumtemperatur etwa dreißig Prozent schneller als in vergleichbaren Nanodrähten ohne Verspannung oder Dünnschicht-Materialien aus Galliumarsenid.

Die Elektronenbeweglichkeit vermaßen die Forscher mithilfe von kontaktloser optischer Spektroskopie: Mithilfe eines optischen Laserpulses setzten sie Elektronen aus dem Material frei. Dabei wählten sie die Energie der Lichtpulse so, dass die Hülle praktisch transparent für das Licht erscheint und freie Elektronen nur im Kern der Drähte entstehen. Darauffolgende, hoch­frequente Terahertz-Pulse versetzten die freien Elektronen in Schwingung. „Wir geben den Elektronen praktisch einen Kick und sie beginnen im Draht zu schwingen“, erläutert Alexej Pashkin, der gemeinsam mit seinem Team am HZDR die Messungen für die untersuchten Kern-Hülle-Nanodrähte optimiert hat.

Der Vergleich mit Modellen verrät, wie die Elektronen sich bewegen: Je höher ihre Geschwindigkeit und je weniger sie auf Hindernisse stoßen, desto länger hält die Schwingung an. „Dies ist eigentlich eine Standard­technik. Allerdings haben wir diesmal nicht den gesamten Draht – aus Kern und Hülle –, sondern ausschließlich den winzigen Kern vermessen. Das war eine neue Herausforderung für uns. Der Kern macht etwa ein Prozent des Materials aus. Das heißt wir regen etwa hundertmal weniger Elektronen an und erhalten ein hundertfach schwächeres Signal“, sagt Pashkin.

Ein kritischer Schritt war somit auch die Probenwahl. Eine typische Probe enthält im Mittel rund 20.000 bis 100.000 Nanodrähte auf einem etwa ein Quadrat­millimeter großen Stück Substrat. Liegen die Drähte auf der Probe noch enger beisammen, kann ein unerwünschter Effekt eintreten: Benachbarte Drähte treten miteinander in Wechselwirkung und erzeugen so ein Signal, das dem eines einzelnen, dickeren Drahts ähnelt und die Messungen verfälscht. Wird dieser Effekt nicht erkannt, ist die abgeleitete Elektronen­geschwindigkeit zu niedrig. Das Dresdner Forschungsteam führte zusätzliche Modellierungen sowie eine Serie von Messungen für unterschiedlich dicht gepackte Nanodrähte durch, um diese Störung auszuschließen.

Trends in der Mikroelektronik und Halbleiter-Industrie fordern zunehmend kleinere Transistoren, die sich immer schneller schalten lassen. Fachleute erwarten, dass neue Nanodraht-Konzepte für Transistoren im Laufe der kommenden Jahre auch die industrielle Fertigung erobern. Die Dresdner Entwicklung ist besonders vielversprechend für ultraschnelle Transistoren. Im nächsten Schritt planen die Forscher erste Prototypen auf Basis der untersuchten Nanodrähte zu entwickeln und auf ihre Praxis­tauglichkeit zu testen. Dafür wollen sie metallische Kontakte auf die Nanodrähte aufbringen, prüfen und verbessern, mit Silizium dotierte Materialien testen und Herstellungs­verfahren optimieren.

HZDR / DE

Weitere Infos

Physikunterricht neu denken!

Physik auf Lehramt an der Otto-von-Guericke-Universität Magdeburg studieren. Jetzt auch Quer- und Seiteneinstieg möglich.

Mehr erfahren

Physikunterricht neu denken!

Physik auf Lehramt an der Otto-von-Guericke-Universität Magdeburg studieren. Jetzt auch Quer- und Seiteneinstieg möglich.

Mehr erfahren