Forschung

Raum-Zeit-Kristall aus Magnonen

09.02.2021 - Weltweit erstes Video der periodischen Magnetisierungsstruktur in einem Kristall bei Raumtemperatur.

Einem deutsch-polnischen Forschungs­team ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen zu erzeugen. Mithilfe des Rasterröntgen­mikroskops Maxymus an Bessy II am Helmholtz Zentrum Berlin konnten sie die periodische Magnetisierungs­struktur in einem Kristall sogar filmen. Dieses weltweit erste Video eines Raum-Zeit-Kristalls bei Raum­temperatur sowie das Forschungs­projekt an sich stellten nun Wissen­schaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart, der Adam Mickiewicz University und der Polish Academy of Sciences in Poznań vor.

Bei Raum-Zeit-Kristallen gibt es eine wieder­kehrende Struktur nicht nur im Raum, sondern auch in der Zeit. Die kleinsten Bestandteile sind ständig in Bewegung, bis sie nach einer bestimmten Periode wieder exakt dem ursprünglichen Anordnungs­muster entsprechen. Der Physiknobel­preisträger Frank Wilczek entdeckte 2012 die Symmetrie von Materie in der Zeit. Er gilt als der Entdecker dieser Zeit­kristalle, obwohl er sie als Theoretiker nur hypo­thetisch vorhersagte. Dass es Raum-Zeit-Kristalle tatsächlich gibt, wurde erstmals 2017 entdeckt. Jedoch waren die Strukturen nur wenige Nanometer klein und bildeten sich nur bei sehr kalten Temperaturen von unter -250 Grad Celsius.

Dass es den deutsch-polnischen Wissen­schaftlern nun gelang, bei Raum­temperatur mit einigen Mikrometern verhältnis­mäßig große Raum-Zeit-Kristalle in einem Video abzubilden, gilt daher als bahnbrechend. Ihr Raum-Zeit-Kristall bestand aus Magnonen, den kleinsten Bestandteilen einer Spinwelle. Besonders spannend ist, dass sie zeigen konnten, dass ihr Raum-Zeit-Kristall mit anderen Magnonen, die auf ihn treffen, interagieren kann. „Wir haben das regelmäßig wieder­kehrende Muster der Magnonen in Raum und Zeit genommen, darauf weitere Magnonen geschickt, die dann letztendlich gestreut wurden. Somit konnten wir zeigen, dass beide miteinander inter­agieren können. Das konnte bisher noch niemand in einem Experiment direkt zeigen, geschweige denn in einem Video“, sagt Nick Träger, Doktorand am MPI-IS.

In ihrem Versuch legten die Forscher einen Streifen eines magnetischen Materials auf eine mikroskopische Antenne, durch die sie einen Hochfrequenz-Strom leiteten. Dieses Mikrowellenfeld löste ein oszil­lierendes Magnetfeld aus, eine Energie­quelle, die die Magnonen in dem Streifen anregte. Von links und rechts wanderten magnetische Wellen in den Streifen und kondensierten spontan in ein immer wieder­kehrendes Muster in Raum und Zeit. Im Gegensatz zu trivialen, stehenden Wellen entstand dieses Muster schon vor der Interferenz der zwei aufeinander zulaufenden Wellen. Bei dem Muster, das regelmäßig verschwindet und von selbst wieder entsteht, muss es sich also um einen Quanteneffekt handeln.

Gisela Schütz, Direktorin am MPI-IS und Leiterin der Abteilung für Moderne Magnetische Systeme weist auf die Einzig­artigkeit der Röntgen­kamera hin: „Sie kann die Wellenfronten nicht nur mit sehr hoher Auflösung, die zwanzigfach besser ist als das beste Lichtmikroskop, sichtbar machen. Das geht sogar mit bis zu vierzig Milliarden Bildern pro Sekunde und mit extrem hoher Sensi­tivität auch auf magnetische Phänomene.“ „Wir konnten zeigen, dass solche Raum-Zeit-Kristalle viel robuster und weit mehr verbreitet sind, als man zunächst dachte“, sagt Pawel Gruszecki, Wissen­schaftler der Physik­fakultät der Adam Mickiewicz Universität in Poznań. „Unser Kristall kondensiert bei Raumtemperatur und Teilchen können mit ihm – anders als bei einem isolierten System – interagieren. Zudem hat er eine Größe erreicht, mit der man etwas mit dem Raum-Zeit-Kristall machen könnte. Daraus ergeben sich neben den spannenden funda­mentalen Eiblicken auch möglicher­weise viele Anwendungen.“

Joachim Gräfe, ehemaliger Forschungs­gruppenleiter der Abteilung für Moderne Magnetische Systeme am MPI-IS, pflichtet seinem Kollegen bei und sagt: „Klassische Kristalle haben ein sehr breites Anwendungs­feld. Wenn nun Kristalle nicht nur im Raum, sondern auch in der Zeit interagieren können, fügen wir eine weitere Dimension möglicher Anwen­dungen hinzu. Das Potenzial für Anwendungen in der Kommunikations­technik, der Radar­technik oder Bildgebung ist groß.“

MPI IS / JOL

Weitere Infos

Jetzt Newsletter abonnieren!

Newsletter

Jede Woche gut informiert - abonnieren Sie hier den - Newsletter!

Jetzt Newsletter abonnieren!

Newsletter

Jede Woche gut informiert - abonnieren Sie hier den - Newsletter!