Forschung

Rasante Umverteilung

13.08.2019 - Elektronen in Übergangsmetallen werden in Bruchteilen eines optischen Schwingungszyklus umverteilt.

Forscher der ETH Zürich haben gemessen, wie Elektronen in Übergangs­metallen in Bruchteilen eines optischen Schwingungs­zyklus umverteilt werden. Die Elektronen konzentrieren sich in weniger als einer Femtosekunde um die Metallatome. Diese Umverteilung könnte wichtige makro­skopische Eigenschaften von Verbindungen mit Übergangs­metallen – wie Leitfähigkeit, Magne­tisierung oder optische Charak­teristiken – beeinflussen, welche sich somit auf kürzesten Zeitskalen steuern lassen könnten.

In ihrem Experiment haben Mikhail Volkov und Kollegen in der Gruppe für Kurzzeit-Laserphysik von Ursula Keller dünne Titan- und Zirconium­folien einem kurzen Laserpuls ausgesetzt und die Umverteilung der Elektronen in diesen Übergangs­metallen ;über die resultierenden Veränderungen der optischen Eigen­schaften im extremen Ultraviolett (XUV) beobachtet. Um den induzierten Änderungen mit ausreichend feiner Zeit­auflösung folgen zu können, haben sie zur Messung XUV-Pulse mit einer Dauer von wenigen hundert Atto­sekunden eingesetzt. Durch einen Vergleich mit theoretischen Modellen, welche von der Gruppe von Angel Rubio vom Max-Planck-Institut für die Struktur und Dynamik der Materie in Hamburg beigesteuert wurden, konnte gezeigt werden, dass die sich in weniger als einer Femtosekunde einstellenden Veränderung auf eine Loka­lisierung der Elektronen um die Metallatome zurückzuführen ist. Die Theorie sagt zudem voraus, dass in Übergangs­metallen mit mehr gefüllten äußersten Atomschalen, eine gegenteilige Bewegung zu erwarten ist.

Die Elektronen­verteilung legt die mikro­skopischen elektrischen Felder in einem Material fest, welche dieses nicht nur zusammenhalten, sondern auch einen Großteil seiner makro­skopischen Eigenschaften mitbestimmen. Ändert man die Verteilung der Elektronen, beeinflusst man damit auch die Eigen­schaften des Materials. Das Experiment von Volkov et al. hat gezeigt, dass dies innerhalb von Zeitskalen möglich ist, die viel kürzer sind als der Schwingungs­zyklus von sichtbarem Licht. Wohl noch wichtiger ist der Umstand, dass die Zeitskalen viel kürzer sind als die Therma­lisierungszeit, innerhalb welcher die Elektronen durch Stöße aneinander und mit dem Kristallgitter jegliche Wirkung einer solchen externen Steuerung der Elektronen­verteilung zunichte machen würden.

Dass der Laserpuls in Titan und Zirconium zu einer verstärkten Loka­lisierung der Elektronen führt, war für die Forscher anfänglich überraschend. Ein genereller Trend in der Natur ist, dass wenn man gebundene Elektronen mit mehr Energie versorgt, diese weniger stark lokalisiert werden. Die theo­retischen Analyse, welche die Beobachtungen aus den Experimenten stützt, zeigte, dass die erhöhte Lokalisierung der Elektronen­dichte ein Nettoeffekt ist, welcher durch das stärkere Befüllen der für die Übergangs­metalle charak­teristischen und nur teilweise gefüllten d-Orbitale der Metallatome zustande kommt. Für Übergangs­metalle, welche über bereits mehr als halb gefüllte d-Orbitale verfügen, ist der Nettoeffekt dagegen eine Delo­kalisierung der Elektronen­dichte.

Während das aktuelle Ergebnis von grundlegender Natur ist, zeigen die Experimente die Möglichkeit einer sehr schnellen Modifikation von Material­eigenschaften auf. Solche Modulationen werden in Elektronik und Opto­elektronik für die Verarbeitung elek­tronischer Signale oder die Übertragung von Daten genutzt. Während in aktuellen Komponenten Signalströme mit Frequenzen im Gigahertz-Bereich moduliert werden, deuten die Ergebnisse auf die Möglichkeit einer Signal­verarbeitung im Petahertz-Bereich hin. Die sehr grund­legenden Erkenntnisse können somit einen Einfluss auf die Entwicklung der nächsten Generationen von immer schnelleren Komponenten haben und damit indirekt ihren Weg in unser tägliches Leben finden.

ETHZ / JOL

Weitere Infos

 

Neue Vakuumpumpe VACUU·PURE® 10

Öl- und abriebfreies Vakuum bis 10⁻³  mbar

VACUUBRAND präsentiert eine trockene und abriebfreie Schraubenpumpe für den Vakuumbereich bis 10⁻³ mbar. Die Pumpe besticht durch ihre wartungsfreie Technologie ohne Verschleißteile und weist ein Saugvermögen von 10 m³/h auf. VACUU·PURE 10 ist die ideale Lösung für Prozesse, bei denen partikel- und kohlenwasserstofffreies Vakuum im Bereich bis 10⁻³ mbar benötigt wird. Mit dieser Eigenschaft deckt die Schraubenpumpe viele Anwendungsgebiete ab – wie beispielsweise Analytik, Vorvakuum für Turbomolekularpumpen oder die Regeneration von Kryopumpen. Sie ermöglicht aber auch Prozesse wie die Vakuumtrocknung, Gefriertrocknung, Wärmebehandlung, Entgasung oder Beschichtung. Da keine Verschleißteile zu tauschen sind und lästige Ölwechsel entfallen, ist ein unterbrechungsfreier Betrieb mit sehr langen Standzeiten möglich.

VACCU PURE 10

Lernen Sie VACUU·PURE 10 kennen.

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum

Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.

*Interior Permanent-Magnet

Pfeiffer HiScroll Pumpen Video

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Webinar: Von Transportmessungen in der Festkörperphysik zur Impedanzanalyse in der Elektrotechnik

Nach einer kurzen Einführung in das Lock-in Verstärker Messverfahren erfahren Sie, wie diese Messtechnik bessere und schnellere Transportmessungen ermöglicht.

Mehr Informationen zum Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

Eventbeginn:
03.11.2020 - 12:00
Eventende:
03.11.2020 - 16:00

Mehr Informationen

Webinar: Von Transportmessungen in der Festkörperphysik zur Impedanzanalyse in der Elektrotechnik

Nach einer kurzen Einführung in das Lock-in Verstärker Messverfahren erfahren Sie, wie diese Messtechnik bessere und schnellere Transportmessungen ermöglicht.

Mehr Informationen zum Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

Eventbeginn:
03.11.2020 - 12:00
Eventende:
03.11.2020 - 16:00

Mehr Informationen