Technologie

Nano-Papier zum Sprühen

09.07.2019 - Neues Verfahren erzeugt zweihundert Nanometer dünne Zelluloseschicht.

Mit einem neuen Sprühverfahren lassen sich sehr gleichmäßige Schichten aus Zellulose-Nanofasern im industriellen Maßstab produzieren. Röntgenuntersuchungen an der Forschungslichtquelle PETRA III am DESY, sowie Untersuchungen mit einem Rasterkraftmikroskop und per Neutronenstreuung zeigen dabei, wie die Schichtstruktur aufgebaut ist und sich für verschiedene Zwecke wie beispielsweise extrem dünnes, glattes und festes Nanopapier maßschneidern lässt.

„Poröse, nanostrukturierte Zellulosefilme besitzen eine Reihe vorteilhafter Eigenschaften, die sie für verschiedene Anwendungen interessant machen, von ultrastarken bioaktiven Fasern bis hin zu transparentem leitfähigem Nanopapier“, erläutert Calvin Brett vom DESY und der Königlich-Technischen Hochschule Stockholm. „Sie sind leicht und temperaturstabil, haben hervorragende mechanische Eigenschaften, eine geringe Dichte und bestehen aus nachwachsenden Rohstoffen – die Zellulose-Nanofasern werden in der Regel aus Holz gewonnen.“

Damit sind die Zellulosefilme eine vielversprechende Alternative zu mineralölbasierten Kunststoffen und aussichtreiche Kandidaten für die Konstruktion von funktionalen Materialien wie Bio-Verbundwerkstoffen oder biologisch inspirierten Sensoren. So lassen sich beispielsweise funktionale Polymere oder andere Stoffe in die Poren des Zellulosefilms einbringen, um bestimmte Funktionen zu erzeugen.

Bei dem an der KTH Stockholm und am DESY entwickelten Verfahren werden Zellulose-Nanofasern mit einer mittleren Länge von fünfhundert Nanometern und einer typischen Dicke von drei bis fünf Nanometern in einer wasserhaltigen Trägerflüssigkeit auf einen Siliziumträger gesprüht. Das Trägermaterial wird auf 120 Grad Celsius aufgeheizt, um das Wasser zügig weitgehend zu verdampfen und die Zelluloseschicht so zu stabilisieren. Es entsteht eine sehr gleichmäßige, nur zweihundert Nanometer dünne Zelluloseschicht – eine Art ultradünnes und extrem glattes Papier. „Eine Kernfrage für die richtigen Eigenschaften ist dabei das Verhältnis zwischen der Schichtung der individuellen Nanofasern, der Porosität und der Nanostruktur innerhalb der Zellulosefilme“, erläutert Stephan Roth vom DESY, der auch Professor an der KTH Stockholm ist.

An der von Roth geleiteten Messstation P03 an PETRA III untersuchte das Team die innere Struktur der Zellulosefilme mit Röntgenstrahlung. Die Analysen zeigten, dass die Menge des in den fertigen Zellulosefilmen noch gebundenen Wassers mit der elektrischen Oberflächenladung der aufgesprühten Nanofasern zunimmt. Diese elektrische Ladung lässt sich während der Produktion gezielt beeinflussen und somit die Eigenschaften des Films steuern. Gleichzeitig zeigten Untersuchungen mit dem Rasterkraftmikroskop, dass die Rauigkeit der Zellulosefilme mit steigender Oberflächenladung abnimmt. Je stärker die Einzelfasern elektrisch geladen sind, desto glatter wird der Film.

Weil Wasser besonders empfindlich von Neutronen nachgewiesen werden kann, nutzten die Forscher die Kleinwinkelstreuanlage KWS-1 des Forschungszentrums Jülich am Heinz-Maier-Leibnitz Zentrum in Garching. Sie untersuchten, welche Folgen es hat, wenn das Material benetzt und getrocknet wird, und analysierten die Hohlräume im Film, in die sich funktionale Stoffe wie Polymere oder Metalle einschleusen lassen. „Mit unseren Daten können wir nun Zellulosefilme für bestimmte Anwendungen maßschneidern, die dafür beispielsweise das optimale Verhältnis zwischen Rauigkeit, Wassergehalt und Hohlräumen besitzen“, sagt Roth.

Solche Schichten lassen sich nicht nur im Labor- sondern inzwischen auch im industriellen Maßstab produzieren. „Wir haben das Verfahren soweit hochskaliert, dass es damit jetzt erstmals möglich ist, auf eine fünfzig Meter lange Folie einen Zellulosefilm mit nur zwei Nanometern Rauigkeit aufzutragen“, betont Brett. In einem nächsten Schritt wollen die Forscher nun funktionale Polymere in den Zellulosefilm einbauen um auf diese Weise etwa ein Sensormaterial herzustellen.

DESY / RK

Weitere Infos

 

Produkte des Monats

4 Methoden, um Niederdruck-Gasströmungen zu modellieren

Vakuum- und Niederdrucksysteme werden für unterschiedliche Zwecke, wie Elektronenmikroskope oder in der Halbleiterherstellung, eingesetzt. Forscher und Entwickler, die mit Vakuumsystemen arbeiten, nutzen verstärkt Simulation für eine effizientere Entwicklung und zur Reduktion kostspieliger Prototypen.

 

Zur Registrierung

Neues aus der Welt der Multiphysik-Simulation

Die COMSOL News 2019 enthält spannende Berichte aus den verschiedensten Bereichen der Forschung und Entwicklung. Erfahren Sie, wie Multiphysik-Simulation Smart City-Technologien verbessert, den gezielteren Einsatz von Krebs-Medikamenten ermöglicht und für eisfreie Straßen im Winter sorgen kann!

Laden Sie die COMSOL News 2019 ohne Anmeldung und kostenfrei herunter:

HIER

Produkte des Monats

4 Methoden, um Niederdruck-Gasströmungen zu modellieren

Vakuum- und Niederdrucksysteme werden für unterschiedliche Zwecke, wie Elektronenmikroskope oder in der Halbleiterherstellung, eingesetzt. Forscher und Entwickler, die mit Vakuumsystemen arbeiten, nutzen verstärkt Simulation für eine effizientere Entwicklung und zur Reduktion kostspieliger Prototypen.

 

Zur Registrierung

Neues aus der Welt der Multiphysik-Simulation

Die COMSOL News 2019 enthält spannende Berichte aus den verschiedensten Bereichen der Forschung und Entwicklung. Erfahren Sie, wie Multiphysik-Simulation Smart City-Technologien verbessert, den gezielteren Einsatz von Krebs-Medikamenten ermöglicht und für eisfreie Straßen im Winter sorgen kann!

Laden Sie die COMSOL News 2019 ohne Anmeldung und kostenfrei herunter:

HIER