Forschung

Licht nach Maß

30.07.2020 - Nichtbeugende Lichtfelder für hochauflösende Mikroskopie und nanoskalige Material­bearbeitung.

Moderne Anwendungen wie die hoch­auflösende Mikro­skopie oder die mikro- und nanoskalige Material­bearbeitung benötigen maßge­schneiderte Laserstrahlen, die sich bei der Ausbreitung nicht verändern. Dies stellt eine Heraus­forderung dar, denn Lichtstrahlen verbreitern sich typischer­weise bei der Propagation. Propagations-invariante oder nicht-beugende Licht­felder scheinen daher auf den ersten Blick nicht möglich. Wenn es gelänge, diese herzu­stellen, würden sie neue Anwendungen wie die Lichtscheiben­mikroskopie oder das laser­basierte Schneiden, Fräsen oder Bohren mit hohen Aspekt­verhältnissen ermöglichen.

Einem inter­nationalen Forschungs­team der Univer­sitäten Birmingham und Marseille sowie der West­fälischen Wilhelms-Univer­sität Münster ist es jetzt gelungen, erstmalig einen aus der Natur inspi­rierten Ansatz zugunsten propa­gations-invarianter Licht­felder zu entwickeln und umzusetzen. „Damit kann eine beliebige, gewünschte Intensitäts­struktur einfach durch die Berandung vorgegeben werden und wird damit propa­gations-invariant“, erläutert Cornelia Denz vom Institut für Angewandte Physik. Die Physiker nutzten dafür Licht­strukturen aus, die in Regenbögen oder bei der Trans­mission von Licht durch Trink­gläser zu sehen sind: spektakuläre Strahl­strukturen, die Kaustiken oder helle Fokuslinien.

Das Team entwickelte eine Methode, diese Kaustiken als Basis zur Erzeugung beliebiger Strukturen zu nutzen. Damit wurde eine Methode zur intelli­genten Mani­pulation von Strahl­propagation geschaffen. Auf diese Weise lassen sich unzählige neuartige Laserstrahlen auf der Mikrometer­skala formen, die in der optischen Material­bearbeitung, der multi­dimensionalen Signal­übertragung oder der hochauf­lösenden Bildgebung ganz neue Perspek­tiven eröffnen.

Erst vor wenigen Jahren war es gelungen, einige wenige Lichtfelder zu realisieren, die diese nicht­beugenden Eigen­schaften haben, auch wenn die theoretische Idee schon älter ist: Konzentrische Ring­strukturen wie der Besselstrahl konnten propagations­invariant hergestellt werden. Die Theorie sah eine ganze Klasse von Strahlen voraus, deren trans­versale Form auf elliptischen oder parabolischen Bahnen entstehen und natürliche Lösungen der Wellen­gleichung darstellen. Obwohl seit langem ein Bedarf an maßge­schneiderten Licht­strahlen mit diesen Eigen­schaften besteht, sind sie experimentell kaum erzeugt worden, da die Invarianz der transversalen Intensitäts­struktur während der Propa­gation erhalten bleiben muss.

WWU Münster / JOL

Weitere Infos

Die nächste Generation der effizienten Lösung für die Gasanalyse von Pfeiffer Vacuum

OmniStar und ThermoStar sind kompakte Benchtop-Analysegeräte für Probengase die unter Atmosphärendruck vorliegen. Sie sind die perfekte Komplettlösung zur Gasanalyse, insbesondere bei chemischen Prozessen, in der Halbleiterindustrie,

Metallurgie, Fermentation, Katalyse, Gefriertrocknung und bei der Umweltanalyse. Die Analysesysteme bestehen aus Einlasssystem, Massenspektrometer PrismaPro, trocken verdichtender Membranvakuumpumpe MVP und Turbopumpe HiPace.

 

Pfeiffer Video

Erfahren Sie mehr über Analysegeräte

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum

Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.

*Interior Permanent-Magnet

Pfeiffer HiScroll Pumpen Video

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

 

Mehr Informationen

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

 

Mehr Informationen