Forschung

Innere topologische Strukturen von Festkörpermaterialien

19.02.2019 - Beschreibung der Berry-Curvature und Chern-Zahlen durch Berechnung von Bloch-Zuständen.

Wissenschaftler des MPI für Struktur und Dynamik der Materie und des Ulsan National Institute of Science and Technology in Korea haben eine moderne quanten­mechanische Methode benutzt, um Spin- und Ladungsstrom zu berechnen und dadurch die inneren topologischen Strukturen von Festkörper­materialien zu klassifizieren.

Beobachtete Phänomene lassen sich in der Physik anhand der bekannten Naturgesetze durch mathematische Gleichungen erklären. Sowohl die Notwendigkeit als auch die Objektivität der mathematischen Sprache wird allerdings schon seit Platon und Aristoteles diskutiert. Solche Fragen zur Rolle rein mathematischer Formulierungen für die Erforschung physikalischer Phänomene beschäftigen auch die moderne Festkörperphysik, insbesondere in der Charakterisierung der topologischen Eigenschaften von bestimmten nichtleitenden Materialien.

David Thouless und Kollegen haben 1982 die Quantisierung des Hall-Stroms vorhergesagt, insbesondere dass sie mit einer mathematisch hergeleiteten ganzen Zahl beschrieben werden kann, die auf der topologischen Struktur der quanten­mechanischen Zustände des Materials basiert. Kurz darauf entdeckte Michael Berry, dass diese rein mathematische Zahl in einem Zusammenhang mit der Phase der quanten­mechanischen Wellen­funktion steht. Später bewiesen Duncan Haldane sowie Charles Kane und Eugene Mele, dass diese nicht-trivialen typologischen Zahlen in wirklichen Materialien auftreten, wenn in ihren Atomen der Spin der Elektronen mit der Bahn der Elektronen gekoppelt ist.

Diese Charakterisierung von physikalischen Systemen basiert auf rein mathematischen Argumenten. Die Wirklichkeit der typologischen Konstanten, also der erwähnten ganzen Zahlen, zur Klassifizierung von Materialien wird oft bezweifelt, insofern sie überhaupt in einem Experiment beobachtet werden können.

Stattdessen entwickelte das Forschungsteam eine computer­basierte Methode, die den Hall-Strom in nichtleitenden Materialien berechnet. Dabei entdeckten die Wissenschaftler, dass solche Materialien schon durch diesen Strom anstatt der rein mathematisch motivierten typologischen Zahlen klassifiziert werden können.

 

Durch die Berechnung der zeitabhängigen quanten­mechanischen Gleichungen gelang es ihnen, die Geschwindigkeit der Elektronen gemäß Michael Berrys Formulierung zu bestimmen. Wenn diese Geschwindigkeit der Elektronen aufsummiert wird, ergibt sie eine ganze Zahl, mit der man die quanten­mechanische Struktur des Materials klassifizieren kann. So hat das Team gezeigt, dass der Strom, also eine physikalisch messbare Größe, die nicht auf mathematischen Konzepten beruht, verwendet werden kann, um die Eigenschaften von Materialien zu charakterisieren.

MPSD / RK

Weitere Infos

Die nächste Generation der effizienten Lösung für die Gasanalyse von Pfeiffer Vacuum

OmniStar und ThermoStar sind kompakte Benchtop-Analysegeräte für Probengase die unter Atmosphärendruck vorliegen. Sie sind die perfekte Komplettlösung zur Gasanalyse, insbesondere bei chemischen Prozessen, in der Halbleiterindustrie,

Metallurgie, Fermentation, Katalyse, Gefriertrocknung und bei der Umweltanalyse. Die Analysesysteme bestehen aus Einlasssystem, Massenspektrometer PrismaPro, trocken verdichtender Membranvakuumpumpe MVP und Turbopumpe HiPace.

 

Pfeiffer Video

Erfahren Sie mehr über Analysegeräte

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum

Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.

*Interior Permanent-Magnet

Pfeiffer HiScroll Pumpen Video

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Elektromagnetik-Modellierung mit COMSOL in 18 Minuten

In diesem 18-minütigen WebSeminar lernen Sie die Grundlagen der Analyse elektromagnetischer Felder in Niederfrequenzanwendungen mit der COMSOL Multiphysics®-Software.

Mehr Informationen zum Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

 

Mehr Informationen

Elektromagnetik-Modellierung mit COMSOL in 18 Minuten

In diesem 18-minütigen WebSeminar lernen Sie die Grundlagen der Analyse elektromagnetischer Felder in Niederfrequenzanwendungen mit der COMSOL Multiphysics®-Software.

Mehr Informationen zum Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

 

Mehr Informationen