Forschung

Getrennt in einer Dimension: elektrische Ladung und Spin

14.01.2020 - Quantensimulator bestätigt fünfzig Jahre alte Vermutung.

Die elektrische Ladung eines Elektrons und sein Spin scheinen untrennbar mit­ein­ander verbunden zu sein. Doch in einer streng ein­dimen­sio­nalen Quanten­welt sind beide Quanten­eigen­schaften von­ein­ander lösbar. Diese fünfzig Jahre alte Vermutung konnte nun ein Team vom Munich Center for Quantum Science and Techno­logy experi­mentell bestätigen. Für ihre erfolg­reiche Demon­stration benutzten die Forscher einen Quanten­simulator. Ein solcher speziali­sierter Quanten­computer kann die Quanten­eigen­schaften eines Materials exakt berechnen, woran herkömm­liche Super­computer scheitern.

Im Experiment realisieren die Forscher die ein­dimen­sionale Quanten­welt durch eine Kette magnetischer Atome. In jedem dieser Atome gibt es ein besonderes Elektron, dessen nicht abge­schirmter Spin das Atom zu einem kleinen Magneten macht. Da sich die gegen­sätz­lichen Pole der Magnete anziehen, richten sich diese gegen­sinnig aus: Zeigt ein Nordpol nach oben, dann zeigt der benach­barte nach unten, der über­nächste wieder nach oben. So entsteht eine Kette aus abwechselnd nach oben und unten zeigenden Spins. Die Vorher­sage besagt nun: Stört man solche ein­dimen­sio­nalen Quanten­ketten geschickt, dann können sich die Ladung und der Spin eines Elektrons in einem Atom von­ein­ander trennen. Danach sollten beide als zwei getrennte Quasi­teilchen die Kette entlang­laufen.

Das Team stand vor einer experi­men­tellen Heraus­forderung: Die heutige Nano­techno­logie kann zwar ein­dimen­sionale Atom­ketten herstellen. Aber die Atome haben dann einen Abstand in der Größen­ordnung eines Zehntel­nano­meters. Das ist zu winzig, um die Atome unter einem Licht­mikroskop zu beobachten und ihr Verhalten zu studieren. Hier kommt der Quanten­simulator ins Spiel. Im Prinzip funktioniert er, als würde man die Kette durch ein Gummiband ersetzen und dieses so stark aus­ein­ander­ziehen, dass der Abstand der Atome unter­ein­ander grob zehn­tausend­mal größer wird.

Diesen Mikrometerbereich kann nun ein Licht­mikroskop auflösen. Sichtbar werden die winzigen Atome, indem Laser­licht sie zum Auf­leuchten bringt. Das „Gummiband“ besteht im Experiment aus einem Gitter sich kreuzender Laser­licht­strahlen. Jede Licht­kreuzung wirkt wie eine Falle, die ein Atom, hier ein Lithium­atom, einfängt. Damit sie sich wie Elektronen in einem echten Material verhalten, müssen sie zuerst auf ultra­tiefe Tempera­turen im Vakuum abgekühlt werden.

Lithiumatome sind fermionisch, also kleine Magneten, getragen von einem nicht abge­schirmten Elektronen­spin. Nun mussten die Forscher sich noch einen Trick aus­denken, wie ihr Quanten­simulator diesen Spin sicht­bar machen kann. Dazu lockern sie die Fesseln aus Licht für eine kurze Zeit. Die Folge: Die Atome scheren aus der Kette kurz leicht nach oben oder unten aus, je nach Richtung ihres Spins.

Sobald die Kette der Atome präpariert ist, kicken die Forscher mit Laser­licht ein Atom aus der Mitte der Kette heraus. Dieser „Quench“ erzeugt zwei Quasi­teilchen in der Kette. Das erste Quasi­teilchen ist das vom heraus­ge­worfenen Atom hinter­lassene Loch. Dieses Holon trägt die Quanten­eigen­schaft der Elektronen­ladung in sich. Das zweite Quasi­teilchen, Spinon genannt, entsteht aus den gleich­ge­richteten Spins der beiden Nachbarn links und rechts vom Loch. Verglichen mit dem Hinter­grund der sonst streng gegen­sinnigen Orien­tie­rung der Spins in der Kette, trägt das Spinon nun einen über­zähligen Spin aus dem Quench. Das Team konnte in seinem Quanten­simulator genau verfolgen, wie die beiden Störungen die Atom­kette entlang­wandern. Tatsäch­lich zeigte sich, dass sie sich trennen und unter­schied­lich schnell und in entgegen­gesetzte Richtung bewegen. Ladung und Spin sind völlig unab­hängig von­ein­ander.

Die Trennbarkeit von Ladung und Spin könnte eines Tages auch Anwendungen in der Quanten­informa­tions­techno­logie finden. Vor allem aber demon­striert das Experi­ment erfolg­reich, dass Quanten­simu­latoren sich zu einer ernst zu nehmenden Technik entwickeln. Denn selbst her­kömm­liche Super­computer scheitern am exakten Berechnen solcher Quanten­systeme. Genau diese elegante Möglich­keit bieten ultra­kalte Atome in Licht­gittern. Damit könnten sie in Zukunft ein gezieltes Design neuer Materialien ermöglichen, die zum Beispiel bei Raum­temperatur supra­leitend werden.

MPQ / RK

Weitere Infos

Lithium-Ionen-Akkus modellieren

Eine mathematische Modellierung erlaubt es, die Entwurfsparameter und Betriebsbedingungen von Lithium-Ionen-Akkus genau zu analysieren. Das Paper und ein Webinar zeigen, wie man Parameter für digitale Akkumodelle bestimmt.

Whitepaper lesen!

Wie man Parameter für digitale Akku-Modelle bestimmt

Akkumodelle werden häufig verwendet, um die Kühlung, Leistung und Alterung von Batterien zu simulieren.

 

Jetzt registrieren!

Lithium-Ionen-Akkus modellieren

Eine mathematische Modellierung erlaubt es, die Entwurfsparameter und Betriebsbedingungen von Lithium-Ionen-Akkus genau zu analysieren. Das Paper und ein Webinar zeigen, wie man Parameter für digitale Akkumodelle bestimmt.

Whitepaper lesen!

Wie man Parameter für digitale Akku-Modelle bestimmt

Akkumodelle werden häufig verwendet, um die Kühlung, Leistung und Alterung von Batterien zu simulieren.

 

Jetzt registrieren!