Ein Nanolaser aus Gold und Zinkoxid
23.03.2020 - Nanomaterialien kombinieren die optischen Eigenschaften von Metallen und Halbleitern.
Winzige, aus Metallen und Halbleitern zusammengesetzte Partikel könnten in Bauteilen zukünftiger optischer Computer als Lichtquelle dienen, weil sie einfallendes Laserlicht extrem konzentrieren und verstärken. Wie dieser Prozess funktioniert, hat ein Team aus Deutschland und Schweden um die Oldenburger Physiker Christoph Lienau und Jin-Hui Zhong nun erstmals aufgeklärt. Die Physiker stellten für ihre Studie Nano-Materialien her, die die optischen Eigenschaften von Metallen und Halbleitern kombinieren. Den Ausgangspunkt der Untersuchung bildeten schwammartige Teilchen aus Gold mit einem Durchmesser von einigen Nanometern und Poren mit einer Größe von rund zehn Nanometern. Die Materialwissenschaftler Dong Wang und Peter Schaaf von der Technischen Universität Ilmenau stellten diese Metallschwämme her und entwickelten ein Verfahren, um sie mit einer dünnen Schicht aus dem Halbleiter Zinkoxid zu überziehen. Das Material dringt dabei auch in die winzigen Poren ein.
Die so hergestellten Teilchen sind in der Lage, die Farbe von einfallendem Licht zu verändern. Bestrahlt man sie etwa mit dem Licht eines roten Lasers, geben sie kurzwelligeres, blaues Laserlicht ab. Die abgestrahlte Farbe hängt dabei von den Eigenschaften des Materials ab. „Solche nichtlinearen optischen Nanomaterialien herzustellen ist eine der großen Herausforderungen der derzeitigen Optik-Forschung“, berichtet Lienau. In zukünftigen optischen Computern, die mit Licht statt mit Elektronen rechnen, könnten derartige Nanopartikel als winzige Lichtquellen dienen. „Man könnte solche Partikel auch als Nanolaser bezeichnen“, ergänzt Zhong. Mögliche Einsatzorte wären beispielsweise ultraschnelle optische Schalter oder Transistoren.
Um aufzuklären, wie die Nanomaterialien Licht einer Farbe in eine andere umwandeln, nutzten Teammitglieder um Anne L’Huillier und Anders Mikkelsen von der Universität Lund ein besonderes mikroskopisches Verfahren, die ultraschnelle Photoemissions-Elektronenmikroskopie. Mit Hilfe von extrem kurzen Lichtblitzen konnten sie nachweisen, dass Licht tatsächlich effizient in den Nanoporen konzentriert wird – eine wichtige Voraussetzung für zukünftige Anwendungen. Erich Runge, Physiker von der Technischen Universität Ilmenau, simulierte die Eigenschaften des Materials zusätzlich mit theoretischen Modellen. Wie das Team berichtet, bieten aus Metallen und Halbleitern zusammengesetzte Nanopartikel wahrscheinlich neue Möglichkeiten, um die Eigenschaften des abgestrahlten Lichtes nach Wunsch zu justieren. „Unsere Studie liefert grundlegende neue Einblicke dazu, wie hybride Metall-Halbleiter-Nanostrukturen Licht verstärken“, sagt Zhong. Darüber hinaus könnten die Beobachtungen dazu beitragen, Materialien mit noch besseren optischen Eigenschaften zu entwickeln.
Die Oldenburger Arbeitsgruppe „Ultraschnelle Nano-Optik“ um Christoph Lienau ist darauf spezialisiert, Vorgänge in der Nanowelt mit besonders hoher räumlicher und zeitlicher Auflösung zu untersuchen. Dabei gelangen den Physikern schon mehrfach entscheidende Durchbrüche. Erst kürzlich entwickelten sie eine Art Superlinse aus Gold mit zuvor unerreichter optischer Auflösung.
U. Oldenburg / JOL
Weitere Infos
- Originalveröffentlichung
J.-H. Zhong et al.: Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure, Nat. Commun. 11, 1464 (2020); DOI: 10.1038/s41467-020-15232-w - Ultraschnelle Nano-Optik (C. Lienau), Universität Oldenburg
Die nächste Generation der effizienten Lösung für die Gasanalyse von Pfeiffer Vacuum
OmniStar und ThermoStar sind kompakte Benchtop-Analysegeräte für Probengase die unter Atmosphärendruck vorliegen. Sie sind die perfekte Komplettlösung zur Gasanalyse, insbesondere bei chemischen Prozessen, in der Halbleiterindustrie,
Metallurgie, Fermentation, Katalyse, Gefriertrocknung und bei der Umweltanalyse. Die Analysesysteme bestehen aus Einlasssystem, Massenspektrometer PrismaPro, trocken verdichtender Membranvakuumpumpe MVP und Turbopumpe HiPace.
Erfahren Sie mehr über Analysegeräte
Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum
Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.
*Interior Permanent-Magnet
Erfahren Sie mehr über die neue HiScroll Vakuumpumpe