Dossier

Quanteninformation

Noch ist ein funktionierender Quantencomputer Zukunftsmusik, doch die theoretischen Grundlagen für seine Funktion stehen bereit. Die Grundbausteine eines Quantencomputers lassen sich bereits mit gespeicherten Ionen oder mit neutralen Atomen in optischen Gittern realisieren. Letztere versprechen zudem die erste nichtriviale Anwendung der Quanteninformationsverarbeitung: die Simulation von bestimmten Vielteilchensystemen, die für klassische Computer unzugänglich sind.

Articles

Oliver Morsch
07 / 2018 Seite 22
DPG-Mitglieder

Vereint verschränken, getrennt messen

In drei unabhängigen Experimenten gelang es, die Vielteilchenverschränkung in Bose-Einstein-Kondensaten nachzuweisen.

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Matthias Weidemüller
10 / 2017 Seite 22
Pro-Physik-Mitglieder

Rydbergs Baukasten für die Quantensimulation

Experimente mit riesigen Rydberg-Atomen erlauben die präzise Kontrolle
der dipolaren Wechselwirkung über mesoskopische Distanzen.

weiterlesen
Dieser Artikel ist nur für registrierte Nutzer zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Kai Bongs
06 / 2017 Seite 3
DPG-Mitglieder

Initialzündung für Technologietransfer

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Jonas N. Becker und Christoph Becher
02 / 2017 Seite 18
DPG-Mitglieder

Ein Netzwerk aus Diamanten

Silizium-Fehlstellen-Farbzentren in Diamant-Mikrostrukturen ermöglichen integrierte Quantennetzwerke.

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
David Mesterhazy, Florian Hebenstreit und Uwe-Jens Wiese
10 / 2016 Seite 17
DPG-Mitglieder

Vielseitige Quantenbits

Ein 4-Qubit-Quantencomputer ermöglicht es, die Paarerzeugung von Teilchen und Antiteilchen zu berechnen.

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Mari Carmen Bañuls, J. Ignacio Cirac und Norbert Schuch
09 / 2018 Seite 43
DPG-Mitglieder

Verschränkung und Information

Quantenvielteilchensysteme weisen eine Vielzahl interessanter Phänomene auf, sind aber aufgrund ihrer komplexen Verschränkung sehr schwer zu modellieren. Ideen aus der Quanteninformationstheorie können uns helfen, solche Systeme mit Hilfe von Quantensimulatoren zu simulieren sowie basierend auf ihrer Verschränkungsstruktur effizient zu beschreiben.

Der enorme experimentelle Fortschritt in den letzten fünfzig Jahren hat viele grundlegende Tests der Quantenmechanik ermöglicht. Dies hat die Tür zu neuen Anwendungen aufgestoßen, insbesondere im Zusammenhang mit der Verarbeitung und Übertragung von Information. Quantencomputer und -kommunikationssysteme könnten das Gebiet der Informationsverarbeitung und Kryptographie revolutionieren, auch wenn die Konstruktion skalierbarer Geräte trotz erster Prototypen eine große Herausforderung darstellt. Mit diesen Bemühungen geht die Entwicklung einer Quantentheorie der Information einher, die beschreibt, wie sich die quantenmechanischen Gesetze nutzen lassen, um Daten effizient zu verarbeiten und zu übertragen. Zudem stellt diese Theorie eine formale Sprache zur Verfügung, um beliebige Quanten­systeme zu beschreiben und viele Phänomene auf eine einheitliche Art zu verstehen. Diese Sprache hat sich über den Bereich der Informationsverarbeitung hinaus entwickelt und hält mittlerweile auch in andere Bereiche Einzug, wie die Atom-, Molekül- und Festkörperphysik, Optik und sogar Hochenergiephysik und Kosmologie.

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Wolfgang Pfaff
02 / 2016 Seite 20
DPG-Mitglieder

Verschränkte Quanten im Wafer

Defekte in Siliziumkarbid könnten neue Quantentechnologien ermöglichen.

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Markus Greiner und Immanuel Bloch
10 / 2015 Seite 33

Quantengase unter dem Mikroskop

Festkörperphysikern wird es sicher auch in Zukunft versagt bleiben, jedes einzelne Elektron direkt beobachten, geschweige denn manipulieren zu können. Mit mesoskopischen Systemen aus ultrakalten Atomen statt Elektronen ist dieser Traum dank neuer Detektionstechniken jedoch Wirklichkeit geworden. Dies eröffnet eine Vielzahl neuer Möglichkeiten, um Quanten-Vielteilchensysteme zu charakterisieren und zu manipulieren. Die Anwendungen reichen von der Quanten­optik, Quanteninformation und Festkörperphysik bis zur Quantenfeldtheorie und statistischen Physik.

Die mikroskopische Anordnung und Bewegung von Elektronen in einem Festkörper bestimmt die makroskopischen Eigenschaften von Materialien. Oft ist dieser „Tanz“ der Elektronen hochkomplex und hochkorreliert, d. h. die Teilchen bewegen sich nicht unabhängig voneinander, sondern in einem komplexen Wechselspiel. Eine der großen fundamentalen Herausforderungen der Vielteilchenphysik in Quantensystemen besteht darin, diese Bewegung von Quantenteilchen zu verstehen und vorauszusagen. Als Experimentatoren wünschen wir uns dabei einen möglichst tiefen Einblick in dieses mikroskopische Quantentreiben und seine möglichst gute Kontrolle. Bislang gelang dies − höchst erfolgreich − durch immer bessere Mikroskope, vom Elektronenmikroskop über Rastertunnelmikroskope bis hin zu modernen kohärenten Röntgenquellen. Bisher versagt blieb es Experimentatoren jedoch, Schnappschüsse eines Festkörpers aufzuzeichnen, die jedes einzelne Elektron sichtbar machen. Eine solche „ultimative“ Beobachtung scheint unmöglich − in mesoskopischen Systemen ultrakalter Atome ist dieser Traum jedoch in den letzten Jahren Wirklichkeit geworden. Damit haben sich nicht nur neue Wege zur Charakterisierung von Quanten-Vielteilchensys­temen ergeben, sondern auch neue Möglichkeiten zur Kontrolle über diese Systeme, angefangen von den elementarsten Bausteinen aus einzelnen Atomen.

Ausgangspunkt für die Experimente sind ultrakalte atomare Quantengase in künstlichen Kristallen aus Licht („optische Gitter“). Die Atome spielen die Rolle der Elektronen oder Cooper-Paare in einem Festkörper, dessen periodisches Ionengitter durch das optische Gitter ersetzt wird (Abb. 1). Durch Interferenz von Laserstrahlen lassen sich nahezu beliebige defektfreie Lichtgitter realisieren. Die Atome nehmen diese als Potentialgebirge wahr und können sich darin durch quantenmechanisches Tunneln von einem Gitterplatz zum nächsten bewegen. Zwei Gitterplätze in diesem optischen Kristall sind etwa 500 nm bis 1 μm voneinander entfernt, also etwa 10 000-Mal weiter als in einem typischen Festkörper. Dies erlaubt es prinzipiell, Atome in diesem künstlichen Festkörper optisch direkt zu detektieren, erfordert aber auch deutlich niedrigere Temperaturen, damit die de-Broglie-Materiewellenlänge groß genug wird, um eine Quantenentartung herzustellen. Typischerweise wechselwirken neutrale Atome nur lokal, also wenn sich zwei Atome auf einem Gitterplatz befinden. Dies sind die wichtigsten Zutaten des Hubbard-Modells, eines der prominentesten Modelle der Festkörperphysik für wechselwirkende Teilchen auf einem Gitter. Schon dieses einfache Modell zeigt ein reichhaltiges Phasendiagramm. Im Folgenden wollen wir uns auf bosonische Teilchen in einem Gitter konzentrieren und an diesem Beispiel zeigen, welche neuen Detektionsmöglichkeiten bisher Realität geworden sind.

weiterlesen
Gregor Weihs
05 / 2015 Seite 18

Teleportation im Doppelpack

Mit einer technischen Meisterleistung ist es gelungen, Spin- und Bahndrehimpuls eines Photons auf ein anderes zu teleportieren.

weiterlesen
Rainer Blatt
09 / 2012 Seite 35

Rechnen mit Quanten


In nicht allzu ferner Zukunft werden konventionelle Computer zwangsläufig an ihre Grenzen stoßen. Einen Ausweg könnten Quantencomputer bieten, die sich Superposition und Verschränkung zunutze machen. Quantencomputer mit einigen wenigen gespeicherten Ionen als elementaren Bausteinen liefern bereits heute vielversprechende Ergebnisse bei der Erzeugung nicht-klassischer Zustände sowie der Simulation von quantenmechanischen Systemen.

Seit Jahrzehnten verdoppelt sich etwa alle 18 Monate die Rechenleistung von Computern – empirisch beschrieben durch das Mooresche Gesetz, das einer der Gründungsväter der Firma Intel, Gordon Moore, 1965 formulierte. Seither folgt die Computertechnologie der dadurch vorgegebenen „roadmap“, vor allem durch fortschreitende Miniaturisierung, also immer kleinere Schaltelemente. Bei gleichbleibender Entwicklung müsste irgendwann im nächsten Jahrzehnt ein einzelnes Atom für die Darstellung eines Bits herhalten. Spätestens dann wäre es erforderlich, die Gesetze der Quantenphysik für das Rechnen heranzuziehen. Aber schon in den 1980er-Jahren überlegten David Deutsch und Richard Feynman, wie die Quantenphysik beim Rechnen helfen kann. Feynman hat als mögliche Anwendung zum Beispiel daran gedacht, die komplizierte Schrödinger-Gleichung eines Vielteilchensystems mithilfe eines anderen Quantensystems nachzubilden und zu simulieren, statt sie mühsam und unter großem Aufwand auf klassischen Computern zu berechnen. Dies waren damals aber rein akademische Überlegungen, da unklar war, ob und wie sich ein solcher Quantenrechner überhaupt realisieren ließe.
Als eigenständiges Forschungsfeld etablierte sich die Quanteninformationsverarbeitung ab Mitte der 1990er-Jahre. Auslöser dafür war die Entwicklung von Quantenalgorithmen, die eine sehr schnelle Lösung einiger wichtiger Probleme, wie die Faktorisierung großer Zahlen oder die Suche in Datenbanken, versprechen. Seither wurden verschiedenste Systeme für das Rechnen mit Quanten untersucht. Ignacio Cirac und Peter Zoller von der Universität Innsbruck schlugen 1995 einen der bislang erfolgreichsten Ansätze vor, der darauf beruht, Ionen in einer Paul-Falle zu manipulieren. Zwei interne Zustände der Ionen dienen dabei als Quantenbits (kurz Qubit), in denen die Quanteninformation gespeichert ist: |ψ〉 = c0 |0〉 + c1 |1〉. Die einzelnen Qubits lassen sich mithilfe von adressierten Laserstrahlen verarbeiten, wobei die Bewegung der Ionen in der Falle verwendet wird, um die logischen Gatteroperationen zwischen den Qubits zu erzeugen. Für den Bau eines universellen Quantencomputers reichen demnach zwei einfache Gatteroperationen und deren Kombinationen aus: Bei den sog. Ein-Qubit-Rotationen steuert man mit dem Laser gezielt einzelne Ionen an, während die zweite Operation das quanten­mechanische Analogon eines Booleschen XOR-Gatters ist. Die klassische XOR-Operation invertiert ein Bit, wenn ein Kontroll-Bit gesetzt ist, d. h. sie involviert zwei Bits. Das quantenmechanische Analogon – die CNOT-Operation (controlled NOT) – unterscheidet sich davon fundamental, da es auch für Überlagerungen gelten muss und daher verschränkte Zustände erzeugt. Das entsprechende Zwei-Qubit-Gatter lässt sich ebenfalls mit Laserlichtimpulsen bestimmter Frequenz und Dauer unter Anregung der Ionenbewegung realisieren. Wichtig für diesen Ansatz ist, dass alle Ionen eines Quantenregisters stets in den Grundzustand der harmonischen Bewegung, die sie in dem Fallen­potential ausführen, zu kühlen sind. ...

weiterlesen
Piet O. Schmidt
06 / 2012 Seite 47

Spektroskopie – aber logisch!

Optische Spektroskopie mit höchster Auflösung ist nur möglich an Atomen, die geeignete Übergänge zum Laserkühlen und zur Detektion des internen Zustands haben. Dies schränkte die Methode, z. B. im Hinblick auf hochgenaue Atomuhren, stark ein. Ein neues Verfahren, basierend auf Techniken der Quanteninformationsverarbeitung, hebt diese Beschränkung auf und macht eine Vielzahl weiterer Atome und Moleküle zugänglich. Das eröffnet faszinierende Möglichkeiten bei der Entwicklung optischer Uhren und bei Tests fundamentaler Theorien.

Präzisionsspektroskopie ist eine treibende Kraft für die Weiterentwicklung unseres physikalischen Verständnisses. So machten immer höhere spektroskopische Auflösungen Effekte wie die Fein- und Hyperfeinstruktur sowie die Lamb-Verschiebung sichtbar und führten zur Entwicklung der Quantenelektrodynamik (QED). Die QED ist einer der Grundpfeiler des sehr erfolgreichen Standardmodells der Teilchenphysik, das jedoch eine Reihe von Phänomenen, wie zum Beispiel Dunkle Materie bzw. Energie und die Asymmetrie in der Verteilung von Materie und Antimaterie, nicht erklären kann. Zudem ist die Gravitation nicht mit der QED vereinbar. Aus diesem Grund wird nach einer gemeinsamen Beschreibung aller fundamentalen Wechselwirkungen gesucht. Die Hoffnung besteht, dass die Spektroskopie mit immer höherer Auflösung irgendwann weitere Abweichungen von den Vorhersagen unserer besten Modelle liefert und damit die Richtung für eine verfeinerte und möglicherweise vereinheitlichte Theorie vorgibt.

Sehr lohnenswert ist hierbei die Untersuchung von Systemen, bei denen mögliche Abweichungen besonders ausgeprägt sind. Dazu zählen insbesondere spektroskopische Untersuchungen an Atomen und Molekülen, um mögliche Änderungen von Fundamentalkonstanten nachzuweisen, nach einem eventuellen Dipolmoment des Elektrons zu suchen, die Paritäts­verletzung zu messen sowie generell die QED zu testen. Allerdings gibt es nur wenige theoretische Vorhersagen zur Größenordnung der zu erwartenden Effekte. Da diese im Labor noch nicht gefunden wurden, müssen die Abweichungen so winzig sind, dass nur höchst­auflösende Methoden Erfolg versprechen.

Die mit Abstand genaueste Messmethode ist heutzutage die Laserspektroskopie, mit der sich Frequenzverhältnisse von optischen Uhren auf 17 Stellen genau angeben lassen. Dazu müssen die Referenz­atome bestmöglich von störenden Umwelteinflüssen wie unerwünschten elektromagnetischen Feldern und Stößen mit anderen Atomen abgeschirmt sein. Paul-Fallen für Ionen im Ultrahochvakuum eignen sich dazu besonders gut, da sich die gefangenen Ionen dort in einem beinahe feldfreien Raum befinden. Durch den starken Falleneinschluss tritt bei der Spektroskopie praktisch kein Rückstoß auf (analog zum Mößbauer-Effekt), da ein einzelnes Photon den quantisierten Bewegungs­zustand des Ions in der Falle nicht ändert. ...

weiterlesen
Jürgen Lisenfeld und Alexey V. Ustinov
04 / 2011 Seite 21

Verschränkte Photonenspeicher

Supraleitende Resonatoren haben großes Potenzial für die Quanteninformationsverbeitung.

weiterlesen
Dietrich Leibfried
12 / 2009 Seite 45

Ein Baukasten für Quanteningenieure

Quantencomputer sind nach wie vor Zukunftsmusik. Zwar ist es bereits gelungen, einfache Algorithmen zu implementieren, ein praxistauglicher Quantencomputer setzt jedoch eine skalierbare Quantentechnologie voraus, die es – analog zur gewöhnlichen Mikroelektronik – erlaubt, Quantenbits tausend- und millionenfach zu beherrschen. Ionenfallen sind hierfür ein vielversprechender Kandidat. Gleichzeitig ermöglichen sie Anwendungen über das ursprüngliche Ziel hinaus wie z. B. hochpräzise Uhren.

weiterlesen
Markus Aspelmeyer
04 / 2008 Seite 19

Quantenkommunikation mit Zwischenspeicher

Zwei neue Experimente zeigen einen Weg in Richtung Quantennetzwerke auf.

weiterlesen
Arno Rauschenbeutel
09 / 2007 Seite 23

Schnittstelle für den Quantencomputer

weiterlesen
Dieter Meschede
09 / 2007 Seite 47

Atome mit Licht zähmen

Bereits seit einigen Jahren vollzieht sich sowohl in der Atomphysik als auch in der Quantenoptik eine spürbare Wandlung, die von der reinen Beobachtung der Phänomene wegführt. Inzwischen ist vielmehr der Wunsch, ein System präzise beeinflussen zu können, in den Mittelpunkt wissenschaftlicher Forschung gerückt. Die gezielte Manipulation von Quantensystemen ist dabei ein wesentlicher Schritt auf dem Weg zur Quanteninformationstechnologie – hier mit neutralen Atomen.

weiterlesen
Christine Silberhorn
09 / 2007 Seite 61

Laserlicht nach (Quanten-)Maß

Der Quantencharakter des Lichtes ermöglicht es, Information auf neuartige Weise sicherer und leistungsfähiger zu übertragen und zu verarbeiten. Die Konzepte der Quantenkommunikation- und -kryptographie basieren bislang auf Systemen mit diskreten Variablen, z. B. der Polarisation von Photonen. Doch Systeme mit kontinuierlichen Variablen versprechen große Übertragungsraten, und im diskret-kontinuierlichen Grenzbereich werden einfachere Bauelemente für die Verarbeitung von Quanteninformation erwartet.

weiterlesen
Dagmar Bruß
07 / 2007 Seite 57

Einführungen in die Quanteninformationstheorie

P. Kaye, R. Laflamme, M. Mosca: An Introduction to Quantum Computing
V. Vedral: Introduction to Quantum Information Science

weiterlesen
Wolfgang Dür und Hans-J. Briegel
12 / 2006 Seite 22

Protokolle für die Quanteninformation

weiterlesen
Rainer Blatt
11 / 2005 Seite 37

Ionen in Reih und Glied

Ist eine Münze gezinkt oder nicht, d. h. weist sie Kopf und Zahl auf oder stimmen beide Seiten überein? Ein einfacher Quantenalgorithmus erlaubt es, diese Frage mit nur einem Blick auf die Münze statt zweien zu beantworten. Der ''Rechner'', auf dem dieser Algorithmus ausgeführt wird, besteht nicht aus Transistoren, sondern aus kalten, eingesperrten Ionen.

weiterlesen
Gerhard Birkl
11 / 2005 Seite 45

Atom-Chips, optische Gitter und Mikrolinsen

Nach den großen Erfolgen in der Quanteninformationsverarbeitung mit gespeicherten Ionen zeichnen sich vergleichbare Ergebnisse auch mit neutralen Atomen ab. Wie Ionen lassen sich Atome fast vollständig von der Umgebung abschirmen, und die verschiedenen Ansätze zur Implementierung atomarer Quantenprozessoren wie ''Atom-Chips'', Fallen aus Mikrolinsen oder optische Gitter versprechen eine hohe Flexibilität und Skalierbarkeit.

weiterlesen
Gerd Schön und Alexander Shnirman
11 / 2005 Seite 51

Qubits (fast) zum Anfassen

Bauelemente aus Festkörperstrukturen bieten für die Quanten­informationsverarbeitung mehrere Vorteile: Sie lassen sich schnell schalten, sie sind im Prinzip zu großen Systemen skalierbar und sie können in elektronische Kontroll- und Messkreise integriert werden. Allerdings führt die Kopplung an die externen Schaltkreise und die Umwelt auch zu Dekohärenz, deren Ursachen und Auswirkungen ein wesentlicher Schwerpunkt der aktuellen Forschung sind. Die größten Fortschritte wurden bislang mit Qubits erzielt, die auf Josephson-Kontakten beruhen.

weiterlesen
J. Ignacio Cirac und Peter Zoller
11 / 2005 Seite 31

Qubits, Gatter und Register

Zwar ist ein funktionierender Quantencomputer noch Zukunftsmusik, doch die theoretischen Grundlagen für seine Funktion, gewissermaßen sein Schaltplan, stehen bereit. Die Grundbausteine eines Quantencomputers lassen sich bereits mit gespeicherten Ionen oder mit neutralen Atomen in optischen Gittern realisieren. Letztere versprechen darüber hinaus die erste nichtriviale Anwendung der Quanteninformationsverarbeitung: die Simulation von bestimmten Vielteilchensystemen, die für klassische Computer unzugänglich sind.

weiterlesen
Dagmar Bruß und Harald Weinfurter
11 / 2005 Seite 57

Geheime Botschaften aus Licht

Durch die kommerzielle Bedeutung des Internet haben zuverlässige Methoden der Datenverschlüsselung Einzug in den Alltag gehalten. Ein gängiges Verschlüsselungsverfahren beruht darauf, dass es in endlicher Zeit kaum möglich ist, riesige Zahlen in ihre Primfaktoren zu zerlegen. Während es die Gesetze der Quantenmechanik im Prinzip erlauben, mit einem Quantencomputer dieses Verfahren zu knacken, liefern sie zugleich die Voraussetzungen für ein anderes, absolut sicheres Verschlüsselungsverfahren.

weiterlesen
Dominik Janzing
11 / 2005 Seite 25

Mit Quanten ist zu rechnen

Die Quantentheorie hat unzweifelhaft Physik und Technik revolutioniert und ebenso tiefschürfende Fragen in der Mathematik und Philosophie aufgeworfen. Mit dem Konzept des Quantencomputers erhält nun auch die Informatik neue Impulse. Die quantenmechanischen Gesetze erlauben nämlich grundsätzlich neu­artige Ansätze, um Probleme zu knacken, für die auf klassischen Computern bislang kein effizientes Lösungsverfahren bekannt ist.

weiterlesen
Dietrich Leibfried und Tobias Schätz
01 / 2004 Seite 23

Ein atomarer Abakus

Ein Quantencomputer wäre dank der quantenmechanischen Überlagerung vieler Zustände in der Lage, Probleme zu lösen, welche die Kapazität selbst der größten konventionellen Hochleistungsrechner sprengen. Nachdem es zum Beispiel mit Ionen in Fallen bereits gelungen ist, einzelne Quanten-Rechengatter zu realisieren, besteht die Herausforderung nun in der Skalierung auf größere Rechner-Architekturen.

weiterlesen

News

Forschung

Wiederholte Fehlerkorrektur für den Quantenrechner

27.05.2011 - Mit einer wiederholbaren Fehlerkorrektur können auftretende Fehler bei der Datenverarbeitung mit Quantencomputern schnell und elegant rückgängig gemacht werden.

Forschung

Einzelnes Atom speichert Quanteninformation

02.05.2011 - Mit einem denkbar winzigen Speicher könnte sich ein leistungsfähiger Quantencomputer konstruieren lassen.

Forschung

Quanten mit Perspektiven

21.07.2015 - Eine Stellungnahme der Nationalen Akademie der Wissenschaften Leopoldina zeigt Innovationspotenziale der Quantentechnologien auf.

Links

Fluid-Struktur-Interaktion simulieren

Die Fluid-Struktur-Interaktion (FSI) zählt zu den häufigsten Phänomenen in Wissenschaft und Technik. In diesem Webinar zeigen wir den Einsatz der COMSOL Multiphysics® Software zur Modellierung von FSI.

 

Zur Registrierung

Fluid-Struktur-Interaktion simulieren

Die Fluid-Struktur-Interaktion (FSI) zählt zu den häufigsten Phänomenen in Wissenschaft und Technik. In diesem Webinar zeigen wir den Einsatz der COMSOL Multiphysics® Software zur Modellierung von FSI.

 

Zur Registrierung