Dossier

Large Hadron Collider LHC

Der Large Hadron Collider am europäischen Forschungszentrum CERN in Genf ist ein 27 Kilometer langer Beschleuniger, in dem Protonen oder schwere Ionen auf bislang unerreichte Energien beschleunigt und zur Kollision gebracht werden. 2012 gelang es dort unter anderem, das Higgs-Boson zu entdecken.

Articles

Johannes Albrecht und Christoph Langenbruch
10 / 2018 Seite 35
Pro-Physik-Mitglieder

Vorgeschmack auf neue Physik?

Die Suche nach neuer Physik jenseits des Standardmodells der Teilchenphysik ist zentrales Ziel der aktuellen Forschung. Das präzise Vermessen seltener Zerfälle erlaubt es, die Effekte neuer Teilchen nachzuweisen, selbst wenn sich diese aufgrund ihrer hohen Masse an derzeitigen Beschleunigern nicht direkt erzeugen lassen.

Wir haben einen Meilenstein in unserem Verständnis der Natur erreicht“, so kommentierte der damalige CERN-Generaldirektor Rolf-Dieter Heuer die Entdeckung des Higgs-Bosons im Jahr 2012. Ganz zu Recht, denn schließlich war damit das letzte fundamentale Teilchen des Standardmodells der Teilchenphysik gefunden. Unerwartet war diese Entdeckung allerdings nicht: Aus Präzisionsmessungen der Parameter der elektroschwachen Wechselwirkung, beispielsweise der Massen der W- und Z-Bosonen, ließ sich schon vor der Entdeckung die Masse des Higgs-Bosons im Standardmodell auf weniger als etwa 150 GeV beschränken. In der Tat zeigte sich die zugehörige Signatur im erwarteten Bereich bei 125 GeV.

Dies zeigt sehr anschaulich den typischen Ablauf von Entdeckungen in der Teilchenphysik: Neue Teilchen rufen in Präzisionsmessungen Effekte hervor, die nicht mit den bis dahin bekannten Teilchen zu erklären sind. Hinweise aus Präzisionsmessungen gehen im Allgemeinen den direkten Entdeckungen bis dahin unbekannter neuer Teilchen voraus. Wichtige weitere historische Beispiele sind die Entdeckung des Charm-Quarks, das nach Messungen seltener Kaon-Zerfälle vorhergesagt wurde, die Existenz einer dritten Generation von Quarks, die auf der Entdeckung der Verletzung der Materie-Antimaterie-Symmetrie in der schwachen Wechselwirkung beruht, sowie die genaue Vorhersage der Masse des Top-Quarks...

weiterlesen
Dieser Artikel ist nur für registrierte Nutzer zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Kerstin Sonnabend
02 / 2018 Seite 10
DPG-Mitglieder

Volles Programm bei halber Energie

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Karl Jakobs
09 / 2015 Seite 35

Das Profil des Higgs-Bosons

Während der vergangenen Jahre haben Physiker der beiden Experimente ATLAS und CMS am Large Hadron Collider (LHC) den kompletten zwischen 2010 und 2012 aufgezeichneten Datensatz ausgewertet. Dies ermöglichte es, wichtige Eigenschaften des Higgs-Bosons zu bestimmen und ihre Übereinstimmung mit den Vorhersagen des Standardmodells der Teilchenphysik zu überprüfen. Passt das neue Teilchen in das Standardmodell oder zeigt es exotische, abweichende Eigenschaften? So sagen Erweiterungen z. B. nicht-elementare, zusammengesetzte oder zusätzliche Higgs-Bosonen vorher.

Das Standardmodell der Teilchenphysik enthält Quarks und Leptonen als fundamentale Fermionen mit Spin 1/2. Sie bilden die Bausteine der Materie. Wechselwirkungen zwischen ihnen werden durch den Austausch von Bosonen mit Spin 1, so genannten Vektorbosonen, vermittelt. Diese ebenfalls elementaren Teilchen sind das Photon für die elektromagnetische Wechselwirkung, die W- und Z-Bosonen für die schwache Wechselwirkung und Gluonen für die starke Wechselwirkung. Um die experimentell be­obachteten Massen der W- und Z-Bosonen zu erklären, enthält das Standardmodell einen in den 1960er-Jahren von Brout, Englert und Higgs sowie von Guralnik, Hagen und Kibble etablierten Mechanismus [1]. Er geht von der Existenz eines skalaren Feldes aus, des Higgs-Feldes, welches das gesamte Vakuum durchdringt. Die Massen der W- und Z-Bosonen sowie der Fermionen ergeben sich durch ihre Wechselwirkung mit diesem Feld. Mit der Existenz des skalaren Feldes ist ein Teilchen mit Spin 0, das Higgs-Boson, verbunden. Der Brout-Englert-Higgs-Mechanismus bildet einen zentralen Stützpfeiler des Standardmodells, da er theoretisch konsistent erklärt, wie Elementarteilchen ihre Masse erhalten. Daher beschäftigte die Suche nach diesem Teilchen über Dekaden die Teilchenphysik, und seine Entdeckung im Jahr 2012 war ein Meilenstein [2].

Die Analyse der gesamten von den Detektoren ATLAS und CMS aufgezeichneten Daten (Abb. 1, 2) ermöglichte es, das „Profil“ des neuen Bosons bereits überraschend gut zu bestimmen. Dazu haben auf experimenteller Seite neben der großen Datenmenge auch verbesserte Analysemethoden und eine verbesserte Kalibration der Detektoren beigetragen. Darüber hinaus sind präzise Berechnungen, z. B. der Produktionsraten, für den Vergleich mit den Vorhersagen des Standardmodells wichtig. ...

weiterlesen
Robert Fleischer
09 / 2015 Seite 18

Selten und neu?

Die Experimente CMS und LHCb entdecken einen seltenen Zerfall von B-Mesonen.

weiterlesen
Maike Pfalz
03 / 2017 Seite 8
Pro-Physik-Mitglieder

„Am meisten freue ich mich auf die Physikergebnisse.“

weiterlesen
Dieser Artikel ist nur für registrierte Nutzer zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Stefan Jorda
11 / 2014 Seite 11

Wissenschaft für den Frieden

weiterlesen
Alexander Pawlak
01 / 2014 Seite 23

Sounds of Science

„Have you ever heard about the Higgs Boson blues? I‘m goin‘ down to Geneva baby, gonna teach it to you“, singt Nick Cave mit rauem Timbre zu den schleppenden Klängen seiner Band Bad Seeds. Dem australischen Musiker geht es jedoch nicht um harte Physik, vielmehr verknüpft er im Liedtext kurzerhand das „Gottesteilchen“ mit der Geschichte vom Teufelspakt des Bluesmusikers Robert Johnson. Aber haben die Forscherinnen und Forscher am CERN vielleicht Gründe für einen Higgs-Boson-Blues? Das vor einem halben Jahrhundert postulierte Teilchen ist schließlich entdeckt, der Nobelpreis an seine theoretischen Väter verliehen, und der Large Hadron Collider ist in einen fast zweijährigen Dorn­röschenschlaf versunken.

Ein ausgeschalteter Beschleuniger hat aber nichts mit Stillstand zu tun. Nicht umsonst lautet das Motto des CERN: „Accelerating Science“ und nicht „Finding the Higgs“. In der Betriebspause gilt es, den Upgrade der „Weltmaschine“ auf die Kollisionsenergie von 14 Teraelektronenvolt zu leisten. Bei dieser Energie hoffen die Forscher, mit dem LHC noch genauer auf das entdeckte Higgs-Boson oder noch tiefer in die „Quark-Gluon-Suppe“ des Protons blicken zu können. Doch dafür ist eine Herkulesaufgabe zu stemmen: Sie müssen mehr als zehntausend Hochstrom-Verbindungen zwischen den supraleitenden Beschleunigermagneten im 27 Kilometer langen Tunnel verstärken. Dabei ist höchste Sorgfalt gefordert, war es doch eine fehlerhafte Verbindung zwischen den Magneten, die den LHC im Herbst 2008 für mehr als ein Jahr lahmgelegt hatte. Die Auswertung der riesigen Datenmengen geht derweil weiter, und schon seit geraumer Zeit denkt die Teilchenphysik-Community über den nächsten und übernächsten Upgrade des LHC nach. Für eine um den Faktor fünf bis zehn höhere Kollisionsrate ab 2020 ist jedoch noch viel Entwicklungsarbeit nötig.

Der Schriftsteller Hans Magnus Enzensberger nannte das CERN einmal „Kathedrale der Wissenschaft“, nicht nur wegen der Ausmaße, sondern auch, weil so viele Beteiligte für Projekte arbeiten, die erst nach Jahren Früchte tragen. Diese Kathedrale ist meist vom profanen Krach der Generatoren, Kompressoren und Pumpen erfüllt, hat aber auch Musik zu bieten. ...

weiterlesen
Tilman Plehn und Michael Krämer
12 / 2013 Seite 24

Das Higgs-Teilchen und seine Väter

Die Entdeckung des Higgs-Teilchens ist der bisherige Höhepunkt des vielleicht größten und langfristigsten Projekts der Grundlagenforschung. Es begann mit Enrico Fermi und seinem „Versuch einer Theorie der β-Strahlen“ 1934. Als großes strukturelles Problem dieser Theorie der schwachen Kernkraft stellte sich im Laufe der Jahrzehnte die Tatsache heraus, dass die nach ihm benannte Fermi-Kopplungskonstante nicht einfach eine Zahl ist, sondern die Einheit von 1/Masse2 hat.

Ein Jahr später stellte Hideki Yukawa die grundlegende Verbindung dieses Problems mit dem Higgs-Mechanismus und der Masse von Teilchen her mit seiner Arbeit „On the interaction of elementary particles“: Die schwache Kernkraft hat nur eine kurze Reichweite, die sich mit Hilfe von massiven Austauschteilchen erklären lässt, die wiederum für eine Kopplungskonstante mit Einheit 1/Masse2 verantwortlich sind. In diesem Sinne ist der Higgs-Mechanismus nicht in erster Linie für die Masse zum Beispiel des Tisches, auf dem dieser Artikel geschrieben wird, verantwortlich, sondern für die Größe von Atomkernen.

Mit masselosen Austauschteilchen beschäftigten sich seit den 1920er-Jahren viele Physiker. 1942 schlug Sin-Itiro Tomonaga eine ­mathematisch umfassend verstandene Quantentheorie der elektrischen Ladung, die Quantenelektrodynamik, vor. Unabhängig davon entwickelte Julian Schwinger 1948 dieselbe Theorie. Sowohl Fermis Theorie als auch die Quantenelektrodynamik waren experimentell außerordentlich erfolgreich, und aus heutiger Sicht war die offensichtliche Frage lediglich, wie man eine Version der Quantenelektrodynamik mit massiven Austauschteilchen konstruieren kann, um aus Fermis Theorie der schwachen Kermkräfte eine moderne Quantentheorie zu machen. Tatsächlich versuchte sich Sheldon Glashow, ein Student von Schwinger, im Jahr 1961 noch ohne durchschlagenden Erfolg an diesem Problem.

Zu diesem Zeitpunkt betreten Peter Higgs, Robert Brout und François Englert die Bühne. Die grundlegende Idee hinter dem Higgs-Mechanismus oder allgemeiner der sog. spontanen Symmetriebrechung ist sehr einfach: Wenn man zum Beispiel die Energieniveaus im Wasserstoff­atom betrachtet, dann gibt es viele verschiedene Elektronenzustände mit identischen Energien, weil das Atom unter Rotationen im Raum symmetrisch ist. Bricht man diese Symmetrie von außen, zum Beispiel mit Hilfe eines starken Magnetfelds, so spalten diese Ener­gieniveaus auf. Bei der spontanen Symmetrie­brechung hingegen bricht in einem physikalischen System nicht eine bestimmte Wechselwirkung die Symmetrie; das System nimmt aus welchem Grund auch immer einen Zustand an, der eben nicht symmetrisch ist. Der Higgs-Mechanismus geht noch einen Schritt weiter, indem er postuliert, dass das ganze Universum in einem nicht symmetrischen Vakuum-Zustand existiert, von dem wir aber nicht wissen, wie und warum dieser zustande gekommen ist. Wenn eine symmetrische Welt nur masselose Teilchen erlaubt, dann haben diese Teilchen in einer gebrochen symmetrischen Welt Massen. Kurz nach dem Urknall mag das Vakuum noch symmetrisch gewesen sein, aber heute sehen wir nur eine reduzierte Symmetriestruktur mit massiven Austauschteilchen der schwachen Kernkraft. ...

weiterlesen
Markus Schumacher und Christian Weiser
09 / 2012 Seite 18

Higgs- oder nicht Higgs-Boson?

Die Experimente ATLAS und CMS am LHC entdecken ein neues Teilchen mit einer Masse von 126 GeV/c2.

weiterlesen
Sascha Caron, Sandra Kortner und Peter Schleper
04 / 2012 Seite 55

Großfahndung im Untergrund

Ein zentrales Motiv für den Bau des LHC war die ­Suche nach neuen Elementarteilchen und Wechselwirkungen. Dazu zählen insbesondere das Higgs-Boson, der letzte fehlende Baustein des Standardmodells, sowie Teilchen, die von supersymmetrischen Erweiterungen des Standardmodells vorhergesagt werden.

Zu den ungeklärten Rätseln der Teilchenphysik gehört die Frage nach dem Ursprung der Masse der Elementarteilchen. Obwohl die mathematische Struktur des Standardmodells eigentlich nur masselose Teilchen vorsieht, haben z. B. die Austauschteilchen der schwachen Wechselwirkung, die W+-, W–- und Z0-Bosonen, eine Masse von 80 beziehungsweise 91 GeV/c2. Das Standardmodell beruht auf der Hypo­these, dass der sog. Higgs-Mechanismus Teilchen ­ihre Masse verleiht. Dieser Mechanismus sagt außerdem ein neues Teilchen voraus, das Higgs-Boson. Die experimentelle Suche nach diesem entscheidenden fehlenden Baustein im Mosaik des Standardmodells ist zentral für das Forschungsprogramm des LHC.

Das zweite ungeklärte Rätsel ist die Frage, was jenseits des Standardmodells kommt. Bisher beschreibt das Standardmodell alle beobachteten Wechselwirkungen der Elementarteilchen, eine durchaus bemerkenswerte wissenschaftliche Errungenschaft. Von einer fundamentalen Theorie der Natur ist es jedoch noch weit entfernt, denn die Liste seiner unerklärten Eigenschaften ist recht lang: Auffällig ist zunächst seine Struktur mit drei fundamentalen Kräften und mit drei Generationen von Leptonen und Quarks. Weder für diese Struktur noch für die damit verbundenen Zahlenwerte der Naturkonstanten (Massen, Kopplungskonstanten, ...) gibt es im Standardmodell eine Erklärung. Auch ist fraglich, ob diese Theorie bei sehr hohen Energien gültig sein kann, denn hierfür müssten einige Parameter sehr präzise Werte annehmen. Eine solche Feinjustierung – auch als Hierarchieproblem bekannt – gilt vielen Physikern als unnatürlich. Zudem ist es bisher nicht gelungen, das Standardmodell mit der Gravitation in einer gemeinsamen Theorie zu verknüpfen. Eine Erklärung für die Beobachtung Dunkler Materie und Dunkler Energie im Universum fehlt ebenfalls. Diese Mängelliste ließe sich noch fortsetzen.

Aus diesen Gründen wurde in den letzten Jahrzehnten eine Vielzahl von Erweiterungen des Standardmodells vorgeschlagen. Der prominenteste ­Kandidat ist die Supersymmetrie. Im Gegensatz zum Standardmodell, in dem alle Materieteilchen Fermionen mit Spin ½ sind und Bosonen mit Spin 1 alle Kräfte vermitteln, basiert Supersymmetrie auf dem Postulat einer Symmetrie zwischen Fermionen und Bosonen. Die damit vorhergesagten neuen Teilchen können jedoch viel schwerer als ihre Partner im Standard­modell sein, sodass sie in bisherigen Experimenten nicht zu entdecken waren. Falls das leichteste supersymmetrische Teilchen stabil ist, würde sich damit auch direkt die Existenz Dunkler Materie erklären lassen. ...

weiterlesen
Stephanie Hansmann-Menzemer, Christian Lippmann, Thomas Müller und Norbert Wermes
04 / 2012 Seite 37

Technische Meisterwerke

Auf den ersten Blick scheinen sich die Detektoren des Large Hadron Collider weitgehend zu ähneln: Wie Zwiebelschalen sind ATLAS, CMS, LHCb und ALICE um den Punkt herum aufgebaut, an dem die Teilchen ­kollidieren, und überdecken somit einen möglichst gro­ßen Teil des Raumwinkels. Welche Nachweis­konzepte stehen hinter diesen riesigen Detektoren? Worin unterscheiden sich ihre Ansätze, um den unterschiedlichen physikalischen Fragen, die sie beantworten sollen, gerecht zu werden?

Bei der Konzeption von Detektoren für einen ­Energiebereich, in dem „neue Physik“ erwartet wird, müssen sich die Teilchenphysiker zwangsläufig auf Phänomene fokussieren, die zwar bisher unbekannt, innerhalb des Gebäudes der Teilchenphysik aber „denkbar“ sind. Die Herausforderung besteht darin, charakteristische Merkmale dieser Phänomene (die „Signaturen“) in den Produkten einer Teilchenkollision nachzuweisen, also im sichtbaren Ereignis im Detektor.

Die beiden Großexperimente ATLAS und CMS (siehe Überblick auf S. 28) wurden insbesondere darauf optimiert, in Ereignissen von Proton-Proton-Kollisionen höchster Energie Signaturen von Higgs-Bosonen oder supersymmetrischen Teilchen zu finden. Der Erzeugungsquerschnitt für Higgs-Bosonen wird zum Beispiel je nach dessen Masse zwischen 10 fb und 50 pb erwartet (1 b = 1 barn = ­10–24 cm2). Dies ist 13 bis 9 Größenordnungen kleiner als der totale Wirkungsquerschnitt für inelastische Proton-Proton-Reaktionen bei 14 TeV von etwa 80 mb. Um trotzdem genügend Higgs-Ereignisse zu erzeugen, wurde die Luminosität des LHC so hoch wie möglich getrieben (siehe Artikel auf S. 33). Als Konsequenz kommt es jedes Mal, wenn sich die Protonenpakete alle 25 ns kreuzen, im Mittel zu 25 inelastischen Proton-Proton-Kollisionen, die zusammen pro Sekunde etwa 1011 nachzuweisende Teilchen erzeugen. Das ergibt eine Datenmenge von 50 000 Gigabyte pro Sekunde. Eine elektronische Aufzeichnung und Zwischenpufferung der rund 150 Millionen Auslesekanäle und ein ausgeklügeltes elektronisches Auswahlsystem (Trigger) ermöglichen es jedoch, die Datenmenge bereits vor der Speicherung um vier Größenordnungen zu reduzieren und dabei einen möglichst großen Teil der interessanten Ereignisse zu behalten. Dies bedeutet immer noch eine jährliche Datenmenge von einigen Millionen Gigabyte, die über das weltweite LHC-Computing-GRID [1] verteilt, verwaltet und analysiert wird. ...

weiterlesen
Ulla Blumenschein, Ulrich Uwer und Roger Wolf
04 / 2012 Seite 51

Mit Präzision zu neuen Phänomenen

Neben der direkten Suche nach neuen physikalischen Phänomenen bei höchsten Energien erlaubt der Large Hadron Collider auch Präzisionsmessungen, mit denen sich die Vorhersagen des Standardmodells der Elementarteilchen genau überprüfen lassen. Mögliche Inkonsistenzen und Abweichungen der Messungen von den Vorhersagen können indirekte Hinweise auf bisher unentdeckte Effekte geben.

Eine Vielzahl von Messungen hat das Standard­modell der Teilchenphysik in den letzten Jahrzehnten mit beindruckender Präzision bestätigt. Dennoch wissen wir, dass diese Theorie unvollständig sein muss: Sie liefert weder Kandidaten für die im Universum nachgewiesene Dunkle Materie noch kann sie die Materie-Antimaterie-Asymmetrie unserer Welt erklären. Konzeptionelle Fragen, wie etwa die tiefere Ursache der beobachteten drei Generationen von Quarks und Leptonen, bleiben offen. Daher gilt das Standardmodell heute als eine Näherung einer umfassenderen Theorie, die mit neuen, an höheren Energieskalen beobachtbaren Phänomenen einhergehen sollte.

Zum Aufspüren dieser neuen Phänomene sind weitere Präzisionsmessungen essenziell. Sie dienen zum einen dazu, die noch ungenau bekannten Parameter des Standardmodells besser zu bestimmen, um präzisere Vorhersagen machen zu können. Zum anderen ermöglichen sie den Nachweis von theoretisch vorhergesagten Quantenfluktuationen. Diese Fluktuationen, zu denen im Rahmen der Unschärferelation kurzzeitig auch sehr schwere Teilchen beitragen, können Größen wie Teilchenmassen und Kopplungskonstanten, aber auch die Zerfallseigenschaften von Teilchen beeinflussen. Grundsätzlich gilt, dass Quantenkorrekturen höherer Ordnung, bei denen also eine größere Zahl an Teilchenkopplungen auftritt, gegenüber einfacheren Prozessen unterdrückt sind.

Die Messung der teilweise sehr kleinen Quanten­effekte erlaubt Rückschlüsse auf die Eigenschaften der in den Fluktuationen virtuell auftretenden Teilchen. So ließ sich die Masse des Top-Quarks aus präzisen Daten zum Z-Boson vorhersagen, noch bevor es gelang, das Top-Quark direkt nachzuweisen. Präzisionsmessungen unterstützen auch die Suche nach dem Higgs-Boson, da Quantenkorrekturen mit einem virtuellen Higgs-Boson die Massen schwerer Teilchen wie Top-Quark und W-Boson beeinflussen (Abb. 1). Daher schränken die experimentell bestimmten W- und Top-Massen die mögliche Higgs-Masse weiter ein. So deuten die am LEP2- bzw. Tevatron-Beschleuniger erzielten Ergebnisse auf eine kleine Higgs-Masse nahe der bisherigen Ausschlussgrenze von 114 GeV/c2 hin (Abb. 2) [1]. Für eine präzisere Aussage wäre es nötig, die W-Masse genauer zu kennen. Wird das Higgs-­Boson direkt nachgewiesen, erlaubt der Vergleich von direkt und indirekt ermittelter Higgs-Masse einen wichtigen Konsistenztest des Standardmodells. ...

weiterlesen
Christoph Blume, Klaus Rabbertz und Stefan Tapprogge
04 / 2012 Seite 45

Die starke Seite des LHC

In den letzten vier Jahrzehnten haben zahlreiche Experimente Vorhersagen der Quantenchromodynamik (QCD), der Theorie der starken Wechselwirkung, bestätigt. Bereits die ersten Daten des LHC ermöglichen weitere Tests bei bisher unerreichten Impulsüber­trägen und Energien, die die QCD in beeindruckender Weise bestanden hat.

Nach heutiger Kenntnis sind die durch die starke Wechselwirkung in Kernen der Größenordnung 10–14 m gebundenen Protonen und Neutronen (Nukleonen), ebenso wie alle anderen stark wechselwirkenden Teilchen (Hadronen), wiederum zusammengesetzt aus noch kleineren Konstituenten, den auch Partonen genannten Quarks und Gluonen. Die als punktförmig betrachteten Partonen tragen Farbladungen, deren starke Wechselwirkung sich mithilfe der Quantenchromodynamik beschreiben lässt. Besonderheiten der QCD sind das „Confinement“ sowie die „asymptotische Freiheit“ [1]. Ersteres besagt, dass alle Quarks und Gluonen in Hadronen eingesperrt bleiben und nicht als freie Teilchen nachweisbar sind. Ursache dafür ist die Stärke der Wechselwirkung, die zu großen Abständen hin sogar noch anwächst. Im Kontrast dazu beschreibt die asymptotische Freiheit die Beobachtung, dass sich die Partonen innerhalb eines Teilchens als quasifrei ansehen lassen, wenn man die Struktur der Hadronen mit hoher Auflösung untersucht. Je größer der Impulsübertrag in der Reaktion, der sich aus den Transversalimpulsen der erzeugten Teilchen relativ zur Strahlrichtung bestimmen lässt, desto höher ist die erreichte Auflösung und desto tiefer der Einblick in die Struktur des Protons.

Ereignisse mit den höchsten Transversalimpulsen entsprechen einer Auflösung von rund 10–19 m (Abb. 1).
Aufgrund der asymptotischen Freiheit lässt sich die Dynamik der Partonen bei kleinsten Abständen bzw. größten Impulsüberträgen mit dem mächtigen Werkzeug der Störungsrechnung in der starken Kopplungskonstanten αs theoretisch behandeln (perturbative QCD oder pQCD). Damit man auf diese Weise den Wirkungsquerschnitt einer unelastischen Proton-Proton-Streuung berechnen kann, also die auf eine Streureak­tion bezogene Wahrscheinlichkeit für die Wechselwirkung zweier Protonen, ist es allerdings unerlässlich zu wissen, wie die Partonen in den kollidierenden Protonen verteilt sind (Abb. 2). Diese Partondichten lassen sich bisher zwar nicht ab initio berechnen, aber im Experiment bestimmen, z. B. bei HERA mit Hilfe der Elektron-Proton-Streuung [3]. Dank der experimentell gut überprüften Annahme, dass die Partonverteilungen nicht von der speziellen Teilchenreaktion abhängen, erlaubt die QCD dann präzise Vorhersagen für die Wirkungsquerschnitte der Proton-Proton-Streuung (pp) am LHC. ...

weiterlesen
Ralph Aßmann und Jörg Wenninger
04 / 2012 Seite 33

Von der Idee zur Rekordmaschine

Der Large Hadron Collider ist die größte und eine der komplexesten Maschinen, die der Mensch je gebaut hat. Er markiert den bisherigen Höhepunkt einer Reihe von Beschleunigern, die Ingenieure und Physiker er­dacht haben, um die Struktur der subnuklearen Materie zu erkunden. Zahlreiche technische Innovationen waren nötig, um den LHC zu realisieren und zu bislang unerreichten Energien vorzudringen.

Ein Collider ist eine Maschine, die zwei Teilchenstrahlen auf hohe Energien beschleunigt und in speziellen Detektoren zur Kollision bringt. Beim LHC können die Hadronenstrahlen aus Protonen oder Ionen (z. B. Blei) bestehen. Die (Weiter-)Entwicklung zahlreicher innovativer Konzepte und Technologien erlaubt es, Kollisionsereignisse mit hoher Rate im Ener­giebereich vieler Tera-Elektronenvolt zu erzeugen – näher an den Bedingungen des Urknalls als je zuvor [1]. Um einen Eindruck von der gewaltigen Energie zu ­geben: Ein Elektronenvolt (eV) ist die Energie, die ein Elektron nach Durchlaufen einer 1 m langen Beschleuni­gungsspannung von 1 V/m erreicht. Der Protonenener­gie von 1 TeV entspricht demnach eine 1000 km lange Strecke mit einer Beschleunigungsspannung von 1 M/m.

Schon 1977 kam während der Entwicklung des Large Electron Positron (LEP) Colliders die Idee auf, in dem 26,6 km langen Beschleunigertunnel nach Abschluss des LEP-Betriebs einen Collider für Hadronen zu bauen. Die CERN-Mitgliedsstaaten bewilligten das LHC-Projekt 1994 und führten es in den Folgejahren mit internationalen Beiträgen aus Japan, Kanada und den USA aus. Weitere Länder wie China, Indien oder Russland haben ebenfalls dazu beigetragen.

Der LHC besteht aus zwei unabhängigen, nebeneinanderliegenden Vakuumröhren, die im Mittel 100 Meter unter der Erdoberfläche im Beschleunigertunnel installiert sind (Abb. 1) [2]. Das benötigte, kontinuierliche Vakuumsystem mit einem Druck von unter 10−9 mbar ist eine der vielen technologischen Meisterleistungen am LHC. Die beiden kreisförmigen Ringe speichern zwei gegenläufige Teilchenstrahlen, die jeder mit über 99,99979 % der Lichtgeschwindigkeit etwa 11  000 Mal pro Sekunde umlaufen. ...

weiterlesen
Karl Jakobs und Dieter Zeppenfeld
04 / 2012 Seite 28

Offene Fragen – große Erwartungen

Seit März 2010 kollidieren am Large Hadron Collider am europäischen Forschungszentrum CERN in Genf Protonen miteinander – bei den höchsten bislang in Beschleunigerlabors erzielten Energien. Damit erreicht die Teilchenphysik erstmals die TeV-Energie­skala, auf der richtungsweisende Ent­deckungen zu erwarten sind.

Ein Blick in die Wissenschaftsseiten der Zeitungen erweckt leicht den Eindruck, die Suche nach dem Higgs-Teilchen wäre die zentrale und einzige Aufgabe des Large Hadron Collider – insbesondere nachdem die Panikmache vor winzigen Schwarzen Löchern aus der Presse verschwunden ist. Doch der Eindruck trügt: Sicherlich ist die Untersuchung der Symmetrie­brechung der schwachen Wechselwirkung – und damit verbunden die Suche nach dem Higgs-Teilchen – ein zentraler Punkt, aber die Aufgaben des LHC sind weitaus vielfältiger.

Obwohl der LHC erst auf einen Betrieb von etwa zwei Jahren zurückblicken kann, sind die Fülle und hohe Qualität der durchgeführten Messungen beeindruckend. Sowohl der Beschleuniger als auch die Detektoren haben ihre hervorragende Leis­tungsfähigkeit unter Beweis gestellt. Der Beschleuniger hat 2011 mehr Daten geliefert, als die Forscher sich erträumt hatten. Die Daten wurden hocheffizient aufgezeichnet und zeitnah analysiert. Die beiden großen Kollaborationen, ATLAS und CMS, haben jeweils mehr als 100 Artikel in referierten Zeitschriften publiziert. Auch das sozio­logische Experiment – die erfolgreiche Zusammenarbeit von mehreren Tausend Wissenschaftlern – ist offenbar gelungen.

Der LHC ist das größte Projekt der Elementarteilchenphysik. Der Beschleuniger wurde in rund 12 Jahren vom CERN unter Beteiligung von Industriepartnern gebaut. Supraleitende Magnete erzeugen eine Feldstärke von etwa 8,3 Tesla und halten damit die hochenergetischen Protonen auf der etwa 27 km langen Kreisbahn. Damit ist der LHC auch die größte supraleitende Anlage der Welt. ...

weiterlesen
Günter Quast und Armin Scheurer
05 / 2011 Seite 25

Rechnen im Netz

Mit dem Start des regulären Betriebs des Large Hadron Collider (LHC) am CERN begann für die Teilchenphysik eine neue Ära. In dieser sollen sich zentrale Fragen klären wie die nach dem Ursprung der Masse oder nach der theoretisch vermuteten Supersymmetrie zwischen Fermionen und Bosonen. Die beteiligten Physiker haben sich aber auch auf vielerlei Szenarien neuer Physik jenseits des bisher äußerst erfolgreichen Standardmodells der Teilchenphysik vorbereitet. Das Rückgrat für die Datenauswertung der Experimente bildet ein globales Netzwerk von mehreren hundert Rechenzentren, das „Worldwide LHC Computing Grid“.

Nach jahrzehntelangen Aufbauarbeiten des LHC und der Detektoren ALICE, ATLAS, CMS und LHCb konnten am 10. September 2008 alle Experimente erstmals Strahlreaktionen der Protonen im LHC bei einer Injektionsenergie von 450 GeV aufzeichnen. Während der mehr als einjährigen Reparaturphase nach einer technische Panne im September 2008 gelang es, Milliarden Ereignisse aus der kosmischen Strahlung zu registrieren und damit eine erste Eichung der Detektorkomponenten vorzunehmen. Die Zeit diente insbesondere auch dazu, die Verteilung und Auswertung der Daten innerhalb des Computer-Netzwerks der am LHC beteiligten Institute unter realistischen Bedingungen zu erproben und zu verbessern. Bei der Wiederinbetriebnahme Ende 2009 löste der LHC mit dem Erreichen einer Schwerpunktsenergie von 2,36 TeV schließlich das Tevatron als weltweit leistungsstärksten Beschleuniger ab. Nach einer kurzen Winterpause lief der LHC dann ab dem 30. März 2010 im regulären Betrieb bei einer Schwerpunktsenergie von 7 TeV. ...

weiterlesen
Volker Lindenstruth
01 / 2011 Seite 23

Grafikkarten für die Datenflut

In vielen Bereichen der modernen Physik wächst der Bedarf an Computerleistung stetig. Oft sind mehr als eine Billiarde Rechenoperationen pro Sekunde nötig, um die Datenmassen zu erfassen und auszuwerten oder komplexe physikalische Prozesse zu simulieren. Höchstleistungscomputer verschlingen immer größere Summen und verursachen immense Betriebs­kosten, schon allein durch ihren Energiebedarf. Doch handelsübliche Grafikkarten, wie sie sich in PCs finden, bieten hier besonders interessante Alternativen.

Welche Bedeutung Höchstleistungscomputer für die Forschung haben, macht die Hoch-energiephysik besonders deutlich. Dort gilt es, zunehmend komplexere Detektorsysteme mit immer mehr Sensoren immer schneller auszulesen. Sowohl die Rate der aufgezeichneten Ereignisse als auch die Anzahl der zu messenden Teilchen pro Ereignis steigen. Beim Large Electron-Positron Collider (LEP), dem Vorgänger des Large Hadron Colliders (LHC) am CERN fanden in der Regel noch weniger als hundert Ereignisse pro Sekunde statt, und jedes Ereignis umfasste rund 100 Kilobyte an Daten. Die Daten ließen sich im Wesentlichen nach der Aufzeichnung auswerten. Mit jeder neuen Generation von Detektoren ist die Anforderung an die Computer-Infrastruktur um mehr als eine Größenordnung gestiegen. ...

weiterlesen
Stefan Jorda
05 / 2010 Seite 6

LHC: Zeit der Ernte

weiterlesen
Stefan Jorda
10 / 2008 Seite 20

LHC - ''Licht ins dunkle Universum bringen''

Nach einer Bauzeit von acht Jahren ging in diesem Herbst der drei Milliarden Euro teure Large Hadron Collider (LHC) am europäischen Zentrum für Teilchenphysik CERN in Genf in Betrieb. Wenige Wochen später, im Januar 2009, beginnt die fünfjährige Amtszeit von Rolf-Dieter Heuer als Generaldirektor des CERN – der zweite Deutsche in diesem Amt. Ende August sprach Stefan Jorda mit dem experimentellen Teilchenphysiker in Genf.

In wenigen Wochen fällt der Startschuss für den LHC, und kurz danach beginnt Ihre Amtszeit als Generaldirektor. Wie ist Ihr Gemütszustand?

Gut. Ein kleines bisschen aufgeregt und voller Vorfreude. Nicht angespannt, sondern gespannt.

Ist das auch die allgemeine Stimmung hier am CERN?

Mit Sicherheit. Wir legen jetzt einen Sprint hin am Schluss eines Marathonlaufs, hat jemand gesagt.

Was heißt es, den LHC in Betrieb zu nehmen? Da wird ja nicht ein Schalter umgelegt, und die Maschine läuft …

Genau. Da gibt es viele Teilschritte. Die Vorbeschleuniger des LHC sind bereits alle getestet, auch der erste Einschuss in den Collider. Alles muss fein aufeinander abgestimmt sein, die Steuerung der Magnete, das ganze Timing, bevor am 10. September der Strahl mit der Einschussenergie vom SPS einmal im Kreis herum laufen soll. Wenn beide gegenläufigen Strahlen durchgefädelt sind, werden wir die Energie langsam hoch fahren und die Strahlen zur Kollision bringen – ich hoffe, dass dies am 21. Oktober, dem Tag der offiziellen Einweihung, erstmals der Fall sein wird. Danach starten die Messungen, allerdings
mit niedrigem Strahlstrom.


Wie funktioniert die Inbetriebnahme der Detektoren?

Der Knackpunkt wird sein, die Detektoren wirklich zu verstehen.

weiterlesen
Maike Keuntje
10 / 2008 Seite 25

Ring frei zur ersten Runde

Am 10. September hat der Large Hadron Collider am Forschungszentrum CERN in Genf erfolgreich seinen Betrieb aufgenommen.

weiterlesen
Stefan Jorda
03 / 2007 Seite 25

Physik mit Parlament

Ohne Helm geht gar nichts. Nicht erst seit einem Unfall im vorletzten Jahr wird Sicherheit ganz groß geschrieben am Europäischen Zentrum für Teilchenphysik CERN in Genf. Vorschriftsmäßig mit Helm auf dem Kopf geht es von einer schmucklosen Halle aus mit dem Fahrstuhl rund 100 Meter tief unter die Erde. Wenige Sekunden später ist eine Kaverne erreicht, in der locker ein Mehrfamilienhaus Platz hätte. Hier sollen schon bald einige Rätsel des Universums gelöst werden. Wie kommt die Masse in die Welt? Existiert das Higgs-Boson, dessen Existenz eigens dafür vor 30 Jahren postuliert wurde? Lassen sich mithilfe der Supersymmetrie drei der bekannten Kräfte vereinigen? In welchem Zustand befand sich das Universum unmittelbar nach dem Urknall? Der ATLAS-Detektor, der in der Kaverne entsteht, soll gemeinsam mit den anderen drei Detektoren am LHC-Beschleuniger (Large Hadron Collider) Antworten auf diese und andere fundamentale Fragen liefern. Der dazu notwendige Aufwand ist gigantisch: Bei einem Durchmesser von 24 Metern und einer Länge von 46 Metern wird ATLAS rund 7000 Tonnen wiegen. 

Auch der 27 Kilometer lange LHC selbst geizt nicht mit Superlativen. ...

weiterlesen

News

Forschung

Wir sind mit Augenmaß vorgegangen

11.10.2010 - Interview mit dem Generaldirektor des CERN, Rolf-Dieter Heuer, über Budgetkürzungen und deren Auswirkungen auf das Forschungsprogramm.

Forschung

Auf in die nächste Runde

15.03.2012 - Der Large Hadron Collider am CERN hat am 14. März seinen Betrieb wieder aufgenommen.

Forschung

Higgs - immer noch mehr als nix

13.12.2011 - In einem Seminar haben die CMS- und ATLAS-Kollaborationen ihre Ergebnisse zur Suche nach dem Higgs-Boson präsentiert.

Forschung

Höchste Priorität für den LHC

12.06.2013 - Die europäischen Teilchenphysiker haben eine gemeinsame Strategie verabschiedet.

Forschung

Upgrade für mehr Energie

14.02.2013 - Der Large Hadron Collider wird für zwei Jahre abgeschaltet, um ihn für höhere Energien bereit zu machen.

Forschung

CERN-Daten für alle!

27.11.2014 - Das CERN macht Daten aus seinen Experimenten für Forschung und Unterricht frei im Web verfügbar.

Forschung

Neustart am CERN

03.06.2015 - Am Large Hadron Collider hat die Datennahme bei einer Energie von 13 TeV begonnen.

Forschung

LHC – Neustart mit (fast) doppelter Energie

13.03.2015 - Der Large Hadron Collider ist rundum erneuert und nimmt bald seinen Betrieb bei einer Energie von 13 TeV auf.

Links

Die äußerst leisen, kompakten, ölfreien Pumpen

Die Modelle der neuen Scrollpumpenbaureihe HiScroll von Pfeiffer Vacuum sind ölfreie, hermetisch dichte Vakuumpumpen. Die kompakte Bauweise sowie leiser und vibrationsarmer Betrieb zeichnen die Neuentwicklungen besonders aus.

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum in 3D!

 

HiScroll FunktionsVideo

 

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Einen Schritt weiterdenken – die neue Generation der Scrollpumpen:


Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von
Pfeiffer Vacuum.

 

Erfahren Sie mehr über die HiScroll Vakuumpumpen

Bleistift, Papier und die eine Idee, die die Zukunft verändert

Quantentechnologie, künstliche Intelligenz, additive Fertigung: Michael überführt neueste Erkenntnisse in fortschrittliche Technologien bei ZEISS. Was ihn antreibt? „Einfluss darauf nehmen, wie unsere Gesellschaft lebt und arbeitet.“

Mehr Informationen

Bleistift, Papier und die eine Idee, die die Zukunft verändert

Quantentechnologie, künstliche Intelligenz, additive Fertigung: Michael überführt neueste Erkenntnisse in fortschrittliche Technologien bei ZEISS. Was ihn antreibt? „Einfluss darauf nehmen, wie unsere Gesellschaft lebt und arbeitet.“

Mehr Informationen