April 2014

Bei der National Ignition Facility komprimieren und erhitzen 192 Laserstrahlen eine winzige Kapsel aus Deuterium und Tritium im Zentrum dieser sphärischen Kammer. (vgl. S. 18, Bild: NIF)

Meinung

Edgar Weckert
04 / 2014 Seite 3

Facettenreiche Forschung

weiterlesen

Aktuell

Alexander Pawlak
04 / 2014 Seite 6

FRM II: Neutronenquelle der Erkenntnis

weiterlesen
Stefan Jorda
04 / 2014 Seite 7

SOFIA vor dem Aus?

weiterlesen
Alexander Pawlak
04 / 2014 Seite 8

EFI: Gutachten mit Gegenwind

weiterlesen
Alexander Pawlak
04 / 2014 Seite 10

Einsteins kosmischer Rechenfehler

weiterlesen
Matthias Delbrück
04 / 2014 Seite 11

Europa

Energie für die Grande Nation / Neues EU-Patent auf Zielgerade

weiterlesen
Rainer Scharf
04 / 2014 Seite 12

USA

Sonnige Fortschritte / Nano auf dem Vormarsch / Trends in Forschung und Technik

weiterlesen

Leserbriefe

Sigismund Kobe, Nikolaus Neininger, Hans-Henning Flessner und Dave Hartig
04 / 2014 Seite 14

Reine Lobbyarbeit?

weiterlesen

High-Tech

Im Brennpunkt

Markus Roth
04 / 2014 Seite 18

Trägheitsfusion - Durchbruch oder Werbegag?

Bei Experimenten an der National Ignition Facility haben Fusionsreaktionen mehr Energie freigesetzt,
als zuvor im Brennstoff deponiert wurde.

weiterlesen
Lutz Wisotzki
04 / 2014 Seite 20

Leuchtturm im kosmischen Nebel

Ein Quasar lässt den intergalaktischen Wasserstoff im Licht der Lyman-α-Emissionslinie erstrahlen.

weiterlesen
Alexander Holleitner
04 / 2014 Seite 22

Spins in Spiralform?

Tiefe Temperaturen halbieren den Leitwert in Quantendrähten.

weiterlesen

Forum

Oliver Dreissigacker
04 / 2014 Seite 26

Exzellente Elektronik für übermorgen

Der Begriff „Silicon Saxony“ ist zu Recht weit über die Landesgrenzen hinaus bekannt. In Anlehnung an das kalifornische Silicon Valley steht er für die Region von und um Dresden – dem größten europäischen Standort für Mikroelektronik und organische Elektronik. Rund 300 Firmen mit 40. 000 Mitarbeitern haben sich in einem Verband gleichen Namens zusammengeschlossen, in dieser Branche der größte in Europa. Aber auch die Forschungslandschaft ist dicht bevölkert, mit mehreren Max-Planck-, Fraunhofer-, Helmholtz- und Leibniz-Instituten sowie den TUs in Chemnitz und Dresden. Letztere erhielt 2012 das Prädikat einer Exzellenz-Universität, im gleichen Jahr erhielt sie auch den Zuschlag für den Exzellenzcluster „Center for Advancing Electronics Dresden“ (cfaed).

Die Dimensionen der CMOS-Halbleiterbauelemente gehen derzeit in schnellen Schritten von 28 auf 14 Nanometer herunter. Es ist zwar absehbar, die CMOS-Technologie bis auf 5 Nanometer weiter skalieren zu können, bei einem Abstand der Siliziumatome im Gitter von 0,5 Nanometer liegen dann aber Strukturen vor, die nur noch eine Kantenlänge von zehn Atomen haben. Experten bei Intel halten sogar 3,5 Nano­meter noch für machbar. Damit ist die physikalische Grenze unweigerlich erreicht und die CMOS-Technologie, die mit ihrer Dynamik die rasante Entwicklung der „digitalen Revolution“ mit Internet, Smartphones und Mobil­funk erst möglich gemacht hat, ist endgültig ausgereizt. „Die alte ITRS Roadmap sah die Grenze noch im Jahr 2020, wenn wir jetzt auf 5 oder 3,5 Nanometer gehen, haben wir vielleicht noch bis 2030“, schätzt Gerhard Fettweis vom Institut für Nachrichtentechnik der TU Dresden, der Sprecher des Exzellenzclusters. Daher geht es im cfaed darum, elektronische Systeme aller Art auf anderem Wege voranzutreiben. ...

weiterlesen

Überblick

Thomas Faust, Johannes Rieger, Jörg P. Kotthaus und Eva M. Weig
04 / 2014 Seite 29

Schwingende Nanosaiten

Moderne Methoden der Mikrostrukturierung erlauben es, freitragende Drähte herzustellen, die bei einer Länge von einigen zehn Mikrometern nur etwa hundert Nanometer schmal sind. In Schwingung versetzt, vibrieren solche nanomechanischen Resonatoren mit Eigenfrequenzen im Radiobereich. Resonatoren hoher Güte lassen sich präzise kontrollieren und erlauben zum Beispiel Einblicke in die kohärente Dynamik zweier gekoppelter klassischer Schwingungsmoden. Ihr Einsatz reicht von hochempfindlicher Sensorik bis hin zur Lösung fundamentaler physikalischer Fragen.

Mechanische Strukturen mit Größen im Mikrometerbereich finden sich in einer Vielzahl von Sensorikanwendungen. So sind sie in Airbags, Spielkonsolen und Smartphones als Beschleunigungssensoren integriert, eignen sich aber z. B. auch zur Gasdetektion. Noch weit kleinere, nanomechanische Resonatoren [1] sind aufgrund ihrer deutlich geringeren Massen kaum mehr durch Gravitation oder Trägheits­kräfte zu beeinflussen, lassen sich aber weiterhin komplett durch die Gesetze der klassischen Mechanik beschreiben. Aufgrund der winzigen Rückstellkräfte reagieren sie sehr empfindlich auf viele andere Felder. So eignen sich leitende nano­mechanische Resonatoren als extrem empfindliche Ladungsdetektoren [2]. Die Kombination mit einem winzigen Magneten ermöglicht es, einzelne Elektronen- und nur wenige Kernspins zu detektieren [3]. Außerdem reicht die Massenempfindlichkeit bis in den Yoktogramm-Bereich (10–24 g) [4]. Für solche Sensoren kommen insbesondere nanomechanische Resonatoren hoher Güte infrage, da sie aufgrund ihrer hohen Frequenzen im Megahertz-Bereich eine empfindliche Detektion mit großer Bandbreite erlauben. Solche Resonatoren bilden auch ideale Modellsysteme für Untersuchungen nichtlinearen Verhaltens und Chaos [5]. Darüber hinaus ist es in den letzten Jahren gelungen, mikroskopische mechanische Resonatoren derart weit abzukühlen, dass sie ihren quantenmechanischen Grundzustand erreichen. Damit könnten nanomechanische Modellsysteme sogar dazu dienen, fundamentale Fragen der Quanten­mechanik zu beantworten [6]. ...

weiterlesen
Kai Dierkes und Benjamin Lindner
04 / 2014 Seite 37

Haariges Hören

Bis zu 15 Millionen Menschen in Deutschland klagen gelegentlich oder auch häufiger über Hörprobleme. Die möglichen Ursachen sind vielfältig, meist jedoch ist es Lärm, der die Sinneszellen im Innenohr irreversibel schädigt. Nicht nur Mediziner und Biologen erforschen das Gehör, sondern auch Physiker. Neben Forscherneugier eint sie die Hoffnung, dass unser wachsendes Verständnis für die biophysikalische Funktionsweise des Ohres auch zu neuen diagnostischen und therapeutischen Ansätzen führen kann.

Wir können außerordentlich leise Töne wahrnehmen, die sich von den lautesten (nicht hörschädigenden) Tönen um beeindruckende zwölf Größenordnungen in der Schallintensität unterscheiden. Außerdem sind wir in der Lage, Töne auseinanderzuhalten, die sich um weniger als ein Prozent in ihrer Frequenz unterscheiden (der Halbtonabstand zweier Klavier­tas­ten entspricht etwa sechs Prozent). Bemerkenswert ist, dass sich diese Eigenschaften nicht nur in der Aktivität bestimmter Gehirnareale manifes­tieren, sondern schon auf rein mechanischer Ebene in der Hörschnecke, der Cochlea (Abb. 1). Die zugrundeliegenden Mechanismen sind bisher trotz vieler Fortschritte noch nicht verstanden [1,  2].

Zu den wichtigsten neueren Erkenntnissen zählt, dass sich das Ohr nicht als passiver Detektor verstehen lässt. Vielmehr zeigen Messungen mit modernsten Methoden, dass es sich bei der Gehörschnecke um einen aktiven Verstärker handelt, d. h. um ein Organ, das Energie benötigt, um seine Empfindlichkeit und Frequenzauflösung aufrecht zu erhalten [4]. Eine erstaunliche Begleiterscheinung der Aktivität ist die mechanische Erzeugung von Tönen im Ohr selbst ohne äußere Schallsignale. Diese otoakustischen Emissionen unterhalb der Hörschwelle lassen sich mit empfindlichen Mikrophonen aufzeichnen und zur medizinischen Diagnostik verwenden. Noch herrscht keine Einigkeit darüber, wie genau der aktive Verstärker im Innenohr implementiert ist. Als erwiesen gilt jedoch, dass ein spezieller Zellentyp einen seiner zentralen Elemente bildet: die Haarzellen, die erstaunliche dynamische Merkmale aufweisen. ...

weiterlesen
Patrick Wittenberg
04 / 2014 Seite 45

Der Wandel der Stromnetze

Stromnetze dienen dazu, elektrische Energie zu transportieren und zu verteilen, zudem verbinden sie die verschiedenen Erzeugungseinheiten mit den Verbrauchern. Sie sind ein elementarer und unersetzlicher Bestandteil unserer Stromversorgung. Durch gravierende Änderungen in der Erzeugungsstruktur wandeln sich die Anforderungen an die historisch gewachsenen Stromnetze. Netzbetreiber stehen dadurch vor einer großen Herausforderung, die einer Operation am offenen Herzen gleicht.

Unser heutiges Energieversorgungssystem ist in mehrere Spannungsebenen mit unterschiedlichen Aufgaben unterteilt. Hohe Spannungen sind nötig, um große Erzeugungseinheiten und leis­tungsstarke Verbraucher anzuschließen und Energie über große Entfernungen möglichst verlustfrei zu transportieren. Bei niedrigen Spannungen lässt sich Strom kostengünstig und gefahrlos zu den Kunden verteilen. Historisch haben sich in Deutschland und Europa vier Spannungsebenen entwickelt (Abb. 1).

Das europäische Höchstspannungsnetz (oder auch Übertragungsnetz) wird mit einer Spannung von 380 kV betrieben. Auf älteren Trassen sind auch 220 kV üblich. Dieses große Drehstromnetz verbindet beispielsweise Portugal mit Rumänien oder Deutschland mit Griechenland. Die Netzbetreiber der einzelnen Länder überwachen und betreiben dieses Netz. Eine wichtige Betriebskenngröße des Netzes ist die Drehzahl der einspeisenden Generatoren von 50 Umdrehungen pro Sekunde, die der Netzfrequenz von 50 Hz entspricht.

In jeder Sekunde muss exakt so viel Energie in das Netz eingespeist werden wie benötigt („verbraucht“) wird, denn elektrische Energie lässt sich im Netz nicht speichern. Das ist anders als z. B. im Erdgasnetz, in dem die Rohrleitungen einen Speicher darstellen. Ein ungedeckter Bedarf oder eine überschießende Produktion wirken sich im Stromnetz direkt auf die Frequenz aus und verursachen Abweichungen von den 50 Hz. Die momentane Frequenz gibt daher Aufschluss darüber, ob das Energieversorgungssystem synchron und stabil ist [1].

weiterlesen

Physik im Alltag

Michael Vogel
04 / 2014 Seite 50

Gut verpackt

Barrierefolien sorgen für den notwendigen Schutz, damit Lebensmittel und andere empfindliche Produkte nicht aufgrund von Witterungseinflüssen vorzeitig verderben

weiterlesen

Menschen

04 / 2014 Seite 52

Personalien

weiterlesen
Maike Pfalz
04 / 2014 Seite 55

''Das lernt man im Spiel sehr schön''

weiterlesen
Klaus Thiessen und Eckehard Schöll
04 / 2014 Seite 56

Nachruf auf Marion Asche

weiterlesen
Walter Kies und Johannes Rybach
04 / 2014 Seite 57

Zum Tod von Gernot Decker

weiterlesen

Bücher/Software

Matthias Eschrig
04 / 2014 Seite 58

Peter Fulde: Correlated Electrons in Quantum ­Matter

weiterlesen
Ulrich Gensch
04 / 2014 Seite 58

Siegmund Brandt: The Harvest of a Century

weiterlesen
Michael Bonitz
04 / 2014 Seite 59

Brian K. Ridley: Quantum Processes in Semiconductors

weiterlesen

Tagungen

Tamara Nunner, Timo Kuschel und Andy Thomas
04 / 2014 Seite 63

Spin transport beyond Boltzmann

550. WE-Heraeus-Seminar

weiterlesen
Ortwin Hess, Thomas Zentgraf und Falk Lederer
04 / 2014 Seite 63

Active Nanoplasmonics and Metamaterial Dynamics

551. WE-Heraeus-Seminar

weiterlesen
Andrea Alberti, Dieter Meschede und Reinhard Werner
04 / 2014 Seite 64

Discrete and Analogue Quantum Simulators

553. WE-Heraeus-Seminar

weiterlesen
Alexander Schug und Abhinav Verma
04 / 2014 Seite 64

Physics of biomolecular folding and assembly: Theory meets experiment

 552. WE-Heraeus Seminar

weiterlesen

Rubriken

04 / 2014 Seite 65

Tagungskalender

weiterlesen

Neue Vakuumpumpe VACUU·PURE® 10

Öl- und abriebfreies Vakuum bis 10⁻³  mbar

VACUUBRAND präsentiert eine trockene und abriebfreie Schraubenpumpe für den Vakuumbereich bis 10⁻³ mbar. Die Pumpe besticht durch ihre wartungsfreie Technologie ohne Verschleißteile und weist ein Saugvermögen von 10 m³/h auf. VACUU·PURE 10 ist die ideale Lösung für Prozesse, bei denen partikel- und kohlenwasserstofffreies Vakuum im Bereich bis 10⁻³ mbar benötigt wird. Mit dieser Eigenschaft deckt die Schraubenpumpe viele Anwendungsgebiete ab – wie beispielsweise Analytik, Vorvakuum für Turbomolekularpumpen oder die Regeneration von Kryopumpen. Sie ermöglicht aber auch Prozesse wie die Vakuumtrocknung, Gefriertrocknung, Wärmebehandlung, Entgasung oder Beschichtung. Da keine Verschleißteile zu tauschen sind und lästige Ölwechsel entfallen, ist ein unterbrechungsfreier Betrieb mit sehr langen Standzeiten möglich.

VACCU PURE 10

Lernen Sie VACUU·PURE 10 kennen.

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum

Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.

*Interior Permanent-Magnet

Pfeiffer HiScroll Pumpen Video

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Sonderhefte

Die Sonder­ausgaben Physics' Best und Best of präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Webinar: Grundlagen der Wellenoptik-Simulation in 18 Minuten

Dieses 18-minütige Webinar vermittelt die Grundlagen der Modellierung und Simulation wellenoptischer Systeme.

Mehr Informationen zum Webinar

Webinar: Von Transportmessungen in der Festkörperphysik zur Impedanzanalyse in der Elektrotechnik

Nach einer kurzen Einführung in das Lock-in Verstärker Messverfahren erfahren Sie, wie diese Messtechnik bessere und schnellere Transportmessungen ermöglicht.

Mehr Informationen zum Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

Eventbeginn:
03.11.2020 - 12:00
Eventende:
03.11.2020 - 16:00

Mehr Informationen

Sonderhefte

Die Sonder­ausgaben Physics' Best und Best of präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Webinar: Grundlagen der Wellenoptik-Simulation in 18 Minuten

Dieses 18-minütige Webinar vermittelt die Grundlagen der Modellierung und Simulation wellenoptischer Systeme.

Mehr Informationen zum Webinar

Webinar: Von Transportmessungen in der Festkörperphysik zur Impedanzanalyse in der Elektrotechnik

Nach einer kurzen Einführung in das Lock-in Verstärker Messverfahren erfahren Sie, wie diese Messtechnik bessere und schnellere Transportmessungen ermöglicht.

Mehr Informationen zum Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

Eventbeginn:
03.11.2020 - 12:00
Eventende:
03.11.2020 - 16:00

Mehr Informationen