Forschung

Leuchtende Atmosphäre

Erstmalig Stratosphäre bei einem Exoplaneten nach­ge­wiesen.

11.08.2017 - Im Verlauf einer Beobachtungsphase mit dem Hubble Space Tele­scope stieß ein inter­natio­nales Forscher­team auf glühende Wasser­moleküle in der Atmo­sphäre des Exo­planeten WASP-121b

Das erste klare Signal für das Vor­handen­sein einer umge­benden Strato­sphäre. Die Wissen­schaftler analy­sierten, wie sich die Hellig­keit des Planeten bei verschie­denen Wellen­längen verän­dert. Hinter­grund ist das vorher­sag­bare Verhalten von Wasser­dampf bei verschie­denen Wellen­längen, je nach Wasser­tempe­ratur. Bei niedri­geren Tempera­turen blockiert der Wasser­dampf das Licht darunter. Steigt die Tempe­ratur aller­dings, beginnen die Wasser­moleküle zu leuchten.

„Aus theoretischen Modellen wissen wir, das Stratosphären auf eine spezi­elle Klasse ultra­heißer Exo­planeten hin­weisen, was wiederum auf wichtige physi­ka­lische und chemische Zusammen­setzungen der Atmo­sphäre schließen lässt“, erklärt Tom Evans von der Univer­sity of Exeter. „Als wir Hubble auf WASP-121b richteten, sahen wir leuch­tende Wasser­moleküle, woraus wir schließen konnten, dass der Planet eine starke Strato­sphäre auf­weist.“

WASP-121b ist ein Gasriese, ein „heißer Jupiter“, wenn­gleich er mehr Masse und einen größeren Umfang hat als der Jupiter in unserem Planeten­system. Er um­kreist seinen Stern in 1,3 Tagen und zwar mit der klein­sten Distanz, die mög­lich ist, ohne dass er von seinem Stern zer­rissen wird. Seine Nähe zu dem Stern beschert ihm aller­dings auch atmo­sphä­rische Tempera­turen von 2500 Grad Celsius, einer Tempe­ratur, die Eisen zum Schmelzen bringt.

Forschungen der vergangenen zehn Jahre ließen bereits vermuten, dass einige Exo­planeten Strato­sphären auf­weisen, doch die vor­lie­genden Ergeb­nisse weisen erst­malig leuch­tende Wasser­moleküle nach, ein unwider­leg­bares Signal für das Vor­handen­sein einer Strato­sphäre bei einem Exo­planeten. Den Forschern standen acht­hundert Beob­ach­tungs­stunden mit dem Hubble-Tele­skop zur Ver­fügung.

Neue Vakuumpumpe VACUU·PURE® 10

Öl- und abriebfreies Vakuum bis 10⁻³  mbar

VACUUBRAND präsentiert eine trockene und abriebfreie Schraubenpumpe für den Vakuumbereich bis 10⁻³ mbar. Die Pumpe besticht durch ihre wartungsfreie Technologie ohne Verschleißteile und weist ein Saugvermögen von 10 m³/h auf. VACUU·PURE 10 ist die ideale Lösung für Prozesse, bei denen partikel- und kohlenwasserstofffreies Vakuum im Bereich bis 10⁻³ mbar benötigt wird. Mit dieser Eigenschaft deckt die Schraubenpumpe viele Anwendungsgebiete ab – wie beispielsweise Analytik, Vorvakuum für Turbomolekularpumpen oder die Regeneration von Kryopumpen. Sie ermöglicht aber auch Prozesse wie die Vakuumtrocknung, Gefriertrocknung, Wärmebehandlung, Entgasung oder Beschichtung. Da keine Verschleißteile zu tauschen sind und lästige Ölwechsel entfallen, ist ein unterbrechungsfreier Betrieb mit sehr langen Standzeiten möglich.

VACCU PURE 10

Lernen Sie VACUU·PURE 10 kennen.

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum

Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.

*Interior Permanent-Magnet

Pfeiffer HiScroll Pumpen Video

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

MOVIA- 2-Axis Scan Head for Marking & Coding Applications

Visit our website for more information

Webinar: Grundlagen der Wellenoptik-Simulation in 18 Minuten

Dieses 18-minütige Webinar vermittelt die Grundlagen der Modellierung und Simulation wellenoptischer Systeme.

Mehr Informationen zum Webinar

MOVIA- 2-Axis Scan Head for Marking & Coding Applications

Visit our website for more information

Webinar: Grundlagen der Wellenoptik-Simulation in 18 Minuten

Dieses 18-minütige Webinar vermittelt die Grundlagen der Modellierung und Simulation wellenoptischer Systeme.

Mehr Informationen zum Webinar