Forschung

Wenn Metalle sich verbinden

19.05.2020 - Neue Methode zur Untersuchung der intrinsischen Eigenschaften intermetallischer Verbindungen.

Die physikalischen und chemischen Eigenschaften inter­metallischer Verbindungen werden durch die Realstruktur der synthetisierten Materialien bestimmt und stark durch strukturelle Unvollkommenheiten, wie etwa Verspannung, Versetzungen oder beigemischte Phasen beeinflusst. Dies führt zu wider­sprüchlichen Berichten bei bekannten und – auf den ersten Blick – ausgiebig untersuchten Materialien. 
 

Unter diesen Materialien befindet sich TaGeIr mit der Kristall­struktur vom MgAgAs-Typ. Um den Ursprung der wider­sprüchlichen Berichte zu TaGeIr verstehen zu können, untersuchten Wissenschaftler am Max-Planck-Institut für Chemische Physik fester Stoffe und der Northwestern University Abweichungen der Kristall­struktur vom idealen MgAgAs-Modell, die Möglichkeit einer non-stöchiometrischen Zusammen­setzung (das Auftreten eines Homogenitäts-Bereichs), den Einfluss der Synthese-Route auf die Realstruktur, sowie metallo­graphische Eigenschaften.

Als ein Ergebnis dieser umfassenden Studie konnten die Forscher zeigen, dass die Anwesenheit von weiteren Phasen mit geringem Anteil, die aufgrund der Phasengleichgewichte im ternären System und der selbst nach langen Hitzebehandlung unvollständigen Homogenisierung auftreten, zu extrinsischem metallischem Verhalten sowie zum Auftreten von Supra­leitung bei tiefen Temperaturen führt. Um die intrinsischen Eigenschaften von TaGeIr ermitteln zu können, wurden mikroskopische Proben hergestellt, wodurch sich die Halbleiter-Eigenschaften von TaGeIr schlüssig nachweisen ließen. 

Das dabei beobachtete Verhalten ist im Einklang mit Berechnungen der elektronischen Bandstruktur, in denen nur dann eine Energielücke auftritt, wenn die Iridium-Atome in der MgAgAs-Struktur die heterokubische Lage besetzen. Diese atomare Anordnung wurde in Beugungs­experimenten an Einkristallen bestätigt. Die Größe der Bandlücke wird durch die Misch­besetzung der Ta- und Ge-Positionen beeinflusst.

MPI-CPfS / DE
 

Weitere Infos

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum

Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.

*Interior Permanent-Magnet

Pfeiffer HiScroll Pumpen Video

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Die äußerst leisen, kompakten, ölfreien Pumpen

Die Modelle der neuen Scrollpumpenbaureihe HiScroll von Pfeiffer Vacuum sind ölfreie, hermetisch dichte Vakuumpumpen. Die kompakte Bauweise sowie leiser und vibrationsarmer Betrieb zeichnen die Neuentwicklungen besonders aus.

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum in 3D!

 

HiScroll FunktionsVideo

 

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Bleistift, Papier und die eine Idee, die die Zukunft verändert

Quantentechnologie, künstliche Intelligenz, additive Fertigung: Michael überführt neueste Erkenntnisse in fortschrittliche Technologien bei ZEISS. Was ihn antreibt? „Einfluss darauf nehmen, wie unsere Gesellschaft lebt und arbeitet.“

Mehr Informationen

MOVIA- 2-Axis Scan Head for Marking & Coding Applications

Visit our website for more information

Bleistift, Papier und die eine Idee, die die Zukunft verändert

Quantentechnologie, künstliche Intelligenz, additive Fertigung: Michael überführt neueste Erkenntnisse in fortschrittliche Technologien bei ZEISS. Was ihn antreibt? „Einfluss darauf nehmen, wie unsere Gesellschaft lebt und arbeitet.“

Mehr Informationen

MOVIA- 2-Axis Scan Head for Marking & Coding Applications

Visit our website for more information