Forschung

Vielversprechende Computer-Simulationen für Stellarator-Plasmen

22.09.2020 - Hinweise auf neue Methode zur Senkung der Plasma-Turbulenz.

Zur theoretischen Beschreibung der Turbulenz im Plasma von Fusions­anlagen des Typs Tokamak hat sich der im MPI für Plasma­physik in Garching entwickelte Turbulenz­code „Gyrokinetic Electro­magnetic Numerical Experiment“ GENE bestens bewährt. Für die komplexere Geometrie der Anlagen vom Typ Stellarator erweitert, weisen die Computer-Simulationen mit GENE jetzt auf eine neue Methode hin, die Plasma-Turbulenz in Stellarator-Plasmen zu reduzieren. Das könnte die Effizienz eines künftigen Fusions­kraft­werks deutlich erhöhen.

Für Fusionsforscher ist die Wirbel­bildung im Wasser­stoff­plasma zentrales Forschungs­thema. Die kleinen Wirbel bringen Teilchen und Wärme aus dem heißen Plasma­zentrum nach außen und senken so die Wärme­isolation des magnetisch einge­schlossenen Plasmas. Weil von ihr jedoch die Größe und damit auch der Strompreis eines künftigen Fusions­kraft­werks abhängen, ist es eines der wichtigsten Ziele, diesen turbulenten Transport zu verstehen, vorher­zusagen und beeinflussen zu können.

Weil zur exakten rechnerischen Beschreibung der Plasma­turbulenz hoch­komplexe Gleichungs­systeme zu lösen und zahllose Rechen­schritte auszu­führen wären, bemüht man sich bei der Code­entwick­lung um sinnvolle Verein­fachungen. Der im IPP entwickelte GENE-Code fußt auf einem Satz verein­fachter „gyro­kinetischer“ Gleichungen. Sie lassen alle Erscheinungen im Plasma außer Acht, die für den turbulenten Transport keine große Rolle spielen. Obwohl sich der Rechen­aufwand so um viele Größen­ordnungen senken lässt, waren dennoch zur Weiter­entwick­lung des Codes stets die weltweit schnellsten und leistungs­stärksten Super­computer nötig. Inzwischen kann GENE die Bildung und Ausbreitung kleiner nieder­frequenter Plasma­wirbel im Plasma­inneren gut beschreiben und die experi­men­tellen Ergebnisse reproduzieren und erklären – allerdings zunächst nur für die einfach aufgebauten achsen­symmetrischen Fusions­anlagen vom Typ Tokamak.

Zum Beispiel zeigen die Rechnungen mit GENE, dass schnelle Ionen den turbulenten Transport in Tokamak-Plasmen stark verringern können. Experimente am Garchinger Tokamak ASDEX Upgrade konnten dieses Rechen­ergebnis bestätigen. Die nötigen schnellen Ionen lieferte die zielgenau eingesetzte Plasma­heizung mit Radio­wellen der Ionen­zyklotron-Frequenz.

Bei Stellaratoren hatte man diese Turbulenz-Unter­drückung durch schnelle Ionen experi­mentell bislang noch nicht beobachtet. Neueste Rechnungen mit GENE legen nun jedoch nahe, dass es diesen Effekt auch in Stellarator-Plasmen geben sollte: Im IPP-Stellarator Wendelstein 7-X in Greifswald könnte er die Turbulenz theoretisch um mehr als die Hälfte senken. Wie Alessandro Di Siena, Alejandro Bañón Navarro und Frank Jenko vom IPP zeigen, hängt die optimale Ionen­temperatur stark von der Form des magne­tischen Feldes ab. „Falls sich dieses rechnerische Ergebnis in zukünftigen Experi­menten mit Wendelstein 7-X in Greifswald bestätigen sollte, könnte dies einen Weg zu interessanten Hoch­leistungs­plasmen eröffnen,“ sagt Jenko, Leiter des Bereichs Tokamak­theorie am IPP.

Um GENE zur Turbulenz-Berechnung in den komplizierter geformten Plasmen der Stellaratoren zu benutzen, waren größere Code-Anpassungen nötig. Denn ohne die Achsen­symmetrie der Tokamaks muss man bei den Stellaratoren mit einer wesentlich komplexeren Geometrie zurecht­kommen.

Für Per Helander, Leiter der Abteilung Stellarator­theorie am IPP in Greifswald, sind die mit GENE angestellten Stellarator-Simulationen „physikalisch sehr spannend“. Er hofft, dass sich die Ergebnisse im Greifswalder Stellarator Wendelstein 7-X überprüfen lassen. „Ob die Plasmawerte in Wendelstein 7-X für solche Experimente geeignet sind, können wir unter­suchen, wenn in der kommenden Experimentier­periode neben den jetzigen Mikro­wellen- und Teilchen­heizungen auch die Radio­wellen­heizung in Betrieb gehen wird“, sagt Robert Wolf, dessen Bereich für die Plasma­heizungen zuständig ist.

Ein weiterer „gewaltiger Schritt“ war es, so Jenko, GENE nicht nur näherungs­weise, sondern komplett für die komplexe, drei­dimen­sionale Form der Stellaratoren zu ertüchtigen. Nach nahezu fünf Jahren Entwicklungsarbeit liefere der jetzt vorgestellte Code GENE-3D eine „schnelle und dennoch realistische Turbulenz­berechnung auch für Stellaratoren.“ Im Unter­schied zu anderen Stellarator-Turbulenz­codes beschreibt GENE-3D dabei die volle Dynamik des Systems, also die turbulente Bewegung der Ionen und auch der Elektronen über das gesamte innere Volumen des Plasmas, inklusive der resultie­renden Schwankungen des Magnetfelds.

IPP / RK

Weitere Infos

 

Neue Vakuumpumpe VACUU·PURE® 10

Öl- und abriebfreies Vakuum bis 10⁻³  mbar

VACUUBRAND präsentiert eine trockene und abriebfreie Schraubenpumpe für den Vakuumbereich bis 10⁻³ mbar. Die Pumpe besticht durch ihre wartungsfreie Technologie ohne Verschleißteile und weist ein Saugvermögen von 10 m³/h auf. VACUU·PURE 10 ist die ideale Lösung für Prozesse, bei denen partikel- und kohlenwasserstofffreies Vakuum im Bereich bis 10⁻³ mbar benötigt wird. Mit dieser Eigenschaft deckt die Schraubenpumpe viele Anwendungsgebiete ab – wie beispielsweise Analytik, Vorvakuum für Turbomolekularpumpen oder die Regeneration von Kryopumpen. Sie ermöglicht aber auch Prozesse wie die Vakuumtrocknung, Gefriertrocknung, Wärmebehandlung, Entgasung oder Beschichtung. Da keine Verschleißteile zu tauschen sind und lästige Ölwechsel entfallen, ist ein unterbrechungsfreier Betrieb mit sehr langen Standzeiten möglich.

VACCU PURE 10

Lernen Sie VACUU·PURE 10 kennen.

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum

Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.

*Interior Permanent-Magnet

Pfeiffer HiScroll Pumpen Video

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Webinar: Grundlagen der Wellenoptik-Simulation in 18 Minuten

Dieses 18-minütige Webinar vermittelt die Grundlagen der Modellierung und Simulation wellenoptischer Systeme.

Mehr Informationen zum Webinar

Webinar: Von Transportmessungen in der Festkörperphysik zur Impedanzanalyse in der Elektrotechnik

Nach einer kurzen Einführung in das Lock-in Verstärker Messverfahren erfahren Sie, wie diese Messtechnik bessere und schnellere Transportmessungen ermöglicht.

Mehr Informationen zum Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

Eventbeginn:
03.11.2020 - 12:00
Eventende:
03.11.2020 - 16:00

Mehr Informationen

Webinar: Grundlagen der Wellenoptik-Simulation in 18 Minuten

Dieses 18-minütige Webinar vermittelt die Grundlagen der Modellierung und Simulation wellenoptischer Systeme.

Mehr Informationen zum Webinar

Webinar: Von Transportmessungen in der Festkörperphysik zur Impedanzanalyse in der Elektrotechnik

Nach einer kurzen Einführung in das Lock-in Verstärker Messverfahren erfahren Sie, wie diese Messtechnik bessere und schnellere Transportmessungen ermöglicht.

Mehr Informationen zum Webinar

Virtuelle Jobbörse

Eine Kooperation von Wiley und der DPG

Da die erste virtuelle Jobbörse mit mehr als 1.500 Registrierungen und über 1.000 teilnehmenden Personen ein sehr großer Erfolg für Anbieter und Teilnehmende war, bieten die Deutsche Physikalische Gesellschaft (DPG) und der Verlag Wiley-VCH eine weitere virtuelle Jobbörse im Herbst an.

Eventbeginn:
03.11.2020 - 12:00
Eventende:
03.11.2020 - 16:00

Mehr Informationen