Forschung

Überraschung im Metallgerüst

22.05.2020 - Unter sehr hohem Druck entstehen ungewöhnliche Nitride in porösen metallischen Gerüststrukturen.

Es ist eine alltägliche Erfahrung: Je kräftiger der Druck ist, den man von allen Seiten auf einen Gegenstand ausübt, desto mehr wird er zusammen­gepresst. Das Volumen verringert sich und Hohlräume im Inneren verschwinden. Doch genau dieser Erfahrung widersprechen die neuen Hochdruck-Experimente an der Universität Bayreuth. Bei einem Kompressions­druck von rund einer Million Atmosphären, wie er rund 2500 Kilometer unterhalb der Erd­oberfläche herrscht, entstehen aus Stickstoff-Atomen und den Atomen eines Metalls poröse Gerüst­strukturen. Dabei bauen Stickstoff-Atomen beispiels­weise zickzack­förmige Ketten auf. In die Hohlräume der neuen Kristalle dringen Stickstoff-Moleküle ein. Bei den in den Experimenten verwendeten Metallen handelt es sich um Hafnium, Wolfram und Osmium. Sie zählen aufgrund ihrer Positionen im Perioden­system der Elemente zur Klasse der Übergangs­metalle. 
 

„Unter normalen Drücken und Temperaturen, wie wir sie auf der Erde kennen, sind Stickstoffmoleküle sehr bindungsunwillig. Deshalb ist es faszinierend zu beobachten, wie sich unter hohen Drücken das Bindungsverhalten des Stickstoffs radikal ändert. Es entstehen komplexe Gerüststrukturen, die unterschiedliche Arten chemischer Bindungen enthalten. In jedem Fall sind diese Strukturen porös – was sehr ungewöhnlich ist, wenn man beispielsweise bedenkt, wie sich Graphit­schichten unter Hochdruck in kompakte und sehr harte Diamanten verwandeln“, erklärt Natalia Dubrovinskaia vom Labor für Kristallographie der Universität Bayreuth, die an der neuen Studie maßgeblich beteiligt war.

Wie die komplexe Gerüst­struktur aussieht, die im Einzelfall entsteht, hängt entscheidend von der Wahl des Übergangs­metalls ab. Dies bedeutet im Prinzip, dass die Synthese der Nitride gezielt gesteuert werden kann – zumindest unter hohen Drücken, wie sie im Labor erzeugt werden können.

„Im Hinblick auf die wachsende technologische Bedeutung von Nitriden, beispielsweise für die Elektronik oder Energie­speicherung, bietet unsere neue Studie zahlreiche Anregungen für die Entwicklung neuer High-Tech-Materialien“, sagt Maxim Bykov, Erstautor der Studie.

U. Bayreuth / DE
 

Weitere Infos

Neue Vakuumpumpe VACUU·PURE® 10

Öl- und abriebfreies Vakuum bis 10⁻³  mbar

VACUUBRAND präsentiert eine trockene und abriebfreie Schraubenpumpe für den Vakuumbereich bis 10⁻³ mbar. Die Pumpe besticht durch ihre wartungsfreie Technologie ohne Verschleißteile und weist ein Saugvermögen von 10 m³/h auf. VACUU·PURE 10 ist die ideale Lösung für Prozesse, bei denen partikel- und kohlenwasserstofffreies Vakuum im Bereich bis 10⁻³ mbar benötigt wird. Mit dieser Eigenschaft deckt die Schraubenpumpe viele Anwendungsgebiete ab – wie beispielsweise Analytik, Vorvakuum für Turbomolekularpumpen oder die Regeneration von Kryopumpen. Sie ermöglicht aber auch Prozesse wie die Vakuumtrocknung, Gefriertrocknung, Wärmebehandlung, Entgasung oder Beschichtung. Da keine Verschleißteile zu tauschen sind und lästige Ölwechsel entfallen, ist ein unterbrechungsfreier Betrieb mit sehr langen Standzeiten möglich.

VACCU PURE 10

Lernen Sie VACUU·PURE 10 kennen.

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum

Die HiScroll Serie besteht aus drei ölfreien und hermetisch dichten Scrollpumpen mit einem nominellen Saugvermögen von 6 – 20 m³/h. Die Pumpen zeichnen sich insbesondere durch ihre hohe Leistung beim Evakuieren gegen Atmosphäre aus. Ihre leistungsstarken IPM*-Synchronmotoren erzielen einen bis zu 15% höheren Wirkungsgrad in Vergleich zu konventionellen Antrieben.

*Interior Permanent-Magnet

Pfeiffer HiScroll Pumpen Video

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

MOVIA- 2-Axis Scan Head for Marking & Coding Applications

Visit our website for more information

Webinar: Grundlagen der Wellenoptik-Simulation in 18 Minuten

Dieses 18-minütige Webinar vermittelt die Grundlagen der Modellierung und Simulation wellenoptischer Systeme.

Mehr Informationen zum Webinar

MOVIA- 2-Axis Scan Head for Marking & Coding Applications

Visit our website for more information

Webinar: Grundlagen der Wellenoptik-Simulation in 18 Minuten

Dieses 18-minütige Webinar vermittelt die Grundlagen der Modellierung und Simulation wellenoptischer Systeme.

Mehr Informationen zum Webinar