Forschung

Stehende Welle lernt laufen

14.08.2019 - Neues Phänomen offenbart bisher unbekannte Transporteigenschaften.

Eine Welle besteht aus Bäuchen und Knoten. Stellt man sich das an einem Seil vor, sind die Bäuche die Wölbungen nach unten oder oben – Berge und Täler. Knoten nennt man die Punkte des Seils, die genau zwischen Berg und Tal liegen. Bei einer stehenden Welle bleiben Knoten immer an derselben Stelle, ein Bauch schwingt lediglich von unten nach oben. Eine Bewegung nach links oder rechts gibt es nicht. Im Gegensatz dazu gibt es laufende Wellen: Versetzt man ein Seil kräftig an einem Ende in Schwingung, erzeugt man eine Welle, die es bis zum Ende durchläuft. Benjamin Zingsem aus der Arbeits­gruppe von Michael Farle an der Universität Duisburg-Essen hat nun erstmals das scheinbare Paradoxon beobachtet.

Dazu hat Zingsem mit einem magne­tischen Material gearbeitet, in dem Dzyalo­shinskii-Moriya-Wechsel­wirkung auftritt: Alle Dipole – die winzigen Magnete, aus denen das Material besteht – sind wie Schrauben­windungen in einer bestimmten Richtung leicht zueinander verdreht. Die Physik nennt so etwas einen chiralen Magneten. ;Wird das System nun resonant zum Schwingen angeregt, bildet sich eine stehende Welle mit laufenden Eigenschaften aus. Diese besitzt ebenfalls stationäre Knoten und Bäuche, aber gleichzeitig erzeugt eine konti­nuierliche Phasen­verschiebung den Eindruck einer laufenden Welle. „Ich musste es mir lange ansehen, bis ich in Worte fassen konnte, was das ist. Wirklich begriffen habe ich es erst, nachdem ich ein Video davon gesehen hatte“, so Zingsem. Denn stehende Wellen sind ein grund­legendes Phänomen der Physik, das man bisher verstanden glaubte.

Der Effekt offenbart in solchen Systemen bisher unbekannte Transport­eigenschaften. So können über ihre magne­tischen Schwingungen zum Beispiel Informationen gespeichert, übertragen und verarbeitet werden, ohne dass dabei – wie in herkömm­lichen Systemen – Wärme anfällt. Für das Projekt hat Zingsem unter anderem mit Kollegen der University of Colorado und der University of Glasgow zusammen­gearbeitet

UDE / JOL

Weitere Infos

Fluid-Struktur-Interaktion simulieren

Die Fluid-Struktur-Interaktion (FSI) zählt zu den häufigsten Phänomenen in Wissenschaft und Technik. In diesem Webinar zeigen wir den Einsatz der COMSOL Multiphysics® Software zur Modellierung von FSI.

 

Zur Registrierung

Fluid-Struktur-Interaktion simulieren

Die Fluid-Struktur-Interaktion (FSI) zählt zu den häufigsten Phänomenen in Wissenschaft und Technik. In diesem Webinar zeigen wir den Einsatz der COMSOL Multiphysics® Software zur Modellierung von FSI.

 

Zur Registrierung