Technologie

Nano-Doppelverglasung

21.01.2020 - Neuartiges Nanomaterial leitet Wärme entlang der Schichten und isoliert senkrecht dazu.

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftler des Max-Planck-Instituts für Polymer­forschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungs­abhängig unterschiedliche Wärme­leit­eigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärme­isolation. 
 

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle. Oftmals werden für die Isolation extrem leichte, poröse Materialien verwendet wie beispielsweise Styropor, für die Wärmeableitung schwere Materialien wie Metalle. Ein neu entwickeltes Material, welches Wissenschaftler des MPI-P mit der Universität Bayreuth gemeinsam entwickelt und charakterisiert haben, kann nun beide Eigenschaften verbinden. 

Das Material besteht aus sich abwechselnden Schichten hauchdünner Glasplättchen, zwischen denen einzelne Polymerketten eingeschoben sind. „Im Prinzip entspricht unser so hergestelltes Material dem Prinzip einer Doppelverglasung“, so Markus Retsch, Professor an der Universität Bayreuth. „Es zeigt nur den Unterschied, dass wir nicht nur zwei Schichten haben, sondern hunderte.“

Senkrecht zu den Schichten zeigt sich eine gute Wärmeisolation. Mikroskopisch betrachtet ist Wärme eine Bewegung beziehungsweise Schwingung einzelner Moleküle in dem Material, die sich an die benachbarten Moleküle überträgt. Indem viele Schichten aufeinander aufgebaut werden, verringert sich diese Übertragung: Durch jede neue Grenzschicht wird ein Teil der Wärmeübertragung blockiert. Im Gegensatz dazu kann die Wärme innerhalb einer Schicht gut geleitet werden – hier existieren keine Grenzflächen, die den Wärmefluss blockieren würden. So ist die Wärmeübertragung innerhalb einer Schicht um den Faktor vierzig höher als senkrecht dazu.

Die Wärmeleit­fähigkeit entlang der Schichten ist hierbei vergleichbar mit der Wärmeleitfähigkeit von Wärmeleitpaste, die unter anderem zur Aufbringung von Kühlkörpern bei Computer­prozessoren verwendet wird. Für elektrisch isolierende Materialien auf Polymer-Glas-Basis ist dieser Wert außergewöhnlich hoch – er übersteigt den von handelsüblichen Kunststoffen um den Faktor sechs.

Damit das Material effizient funktioniert und zudem transparent ist, mussten die Schichten mit sehr hoher Präzision aufeinander aufgebracht werden – jede Inhomogenität würde die Transparenz ähnlich wie ein Kratzer in einem Stück Plexiglas stören. Jede Schicht hat nur eine Höhe im Bereich von einem Nanometer. Um die Homogenität der Schichtfolge zu untersuchen, wurde das Material in der Gruppe von Josef Breu, Professor für anorganische Chemie an der Universität Bayreuth, charakterisiert.

„Wir nutzen hierfür Röntgenstrahlen, mit denen wir das Material beleuchten“, so Breu. „Durch Überlagerungseffekte dieser Strahlen, die von den einzelnen Schichten reflektiert werden, konnten wir zeigen, dass die Schichten sehr präzise hergestellt werden konnten“.

Eine Antwort, warum diese schichtartige Struktur so außergewöhnlich unterschiedliche Eigenschaften entlang beziehungsweise. senkrecht zu den einzelnen Glasplättchen aufweist, konnte Georg Fytas im Arbeitskreis von H.-J. Butt geben. Mit einer speziellen Laser-basierten Messung konnte seine Gruppe die Ausbreitung von Schallwellen charakterisieren, die ähnlich wie Wärme durch die Betrachtung der Schwingungen einzelner Moleküle im Material zu verstehen ist. „Dieses strukturierte, aber dennoch transparente Material, eignet sich hervorragend, um zu verstehen, wie unterschiedlich der Schall sich entlang der verschiedenen Richtungen ausbreitet“, so Fytas. Aus den unterschiedlichen Schallgeschwindigkeiten kann direkt auf die richtungs­abhängigen mechanischen Eigenschaften geschlossen werden, welche mit keiner anderen Methode zugänglich sind.

In ihrer weiteren Arbeit möchten die Forscher noch besser verstehen, wie Schall- und Wärme­ausbreitung durch den Aufbau der Glasplatten-Polymer Struktur beeinflusst werden kann. Eine mögliche Anwendung sehen die Forscher in dem Bereich leistungs­starker Leuchtdioden, in dem die Glas-Polymerschicht einerseits als transparente Verkapselung dient, andererseits die freigesetzte Wärme seitlich abführen kann.

MPI-P / DE
 

Weitere Infos

Die äußerst leisen, kompakten, ölfreien Pumpen

Die Modelle der neuen Scrollpumpenbaureihe HiScroll von Pfeiffer Vacuum sind ölfreie, hermetisch dichte Vakuumpumpen. Die kompakte Bauweise sowie leiser und vibrationsarmer Betrieb zeichnen die Neuentwicklungen besonders aus.

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum in 3D!

 

HiScroll FunktionsVideo

 

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Einen Schritt weiterdenken – die neue Generation der Scrollpumpen:


Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von
Pfeiffer Vacuum.

 

Erfahren Sie mehr über die HiScroll Vakuumpumpen

Bleistift, Papier und die eine Idee, die die Zukunft verändert

Quantentechnologie, künstliche Intelligenz, additive Fertigung: Michael überführt neueste Erkenntnisse in fortschrittliche Technologien bei ZEISS. Was ihn antreibt? „Einfluss darauf nehmen, wie unsere Gesellschaft lebt und arbeitet.“

Mehr Informationen

Bleistift, Papier und die eine Idee, die die Zukunft verändert

Quantentechnologie, künstliche Intelligenz, additive Fertigung: Michael überführt neueste Erkenntnisse in fortschrittliche Technologien bei ZEISS. Was ihn antreibt? „Einfluss darauf nehmen, wie unsere Gesellschaft lebt und arbeitet.“

Mehr Informationen