10.11.2020 • PhotonikLasertechnik

Metallischer 3D-Druck für den industriellen Einsatz

Fraunhofer-Leitprojekt futureAM erreichte bis zum Projektende zahlreiche Technologiesprünge.

Eine Beschleunigung der additiven Fertigung von Metall­bau­teilen mindestens um den Faktor 10 – mit diesem Ziel startete 2017 das Fraun­hofer-Leit­projekt „futureAM – Next Genera­tion Additive Manu­fac­turing“. Sechs Fraun­hofer-Institute erreichten jetzt zum Projekt­ende gemeinsam Techno­logie­sprünge in der System­technik, bei den Werk­stoffen, in der Prozess­führung und bei der durch­gängigen Digita­li­sierung. Sie steigerten so Leistungs­fähig­keit und Wirt­schaft­lich­keit des Metal Additive Manu­fac­turing entlang der gesamten Prozess­kette.

Abb.: Mehrere Laser am Fraun­hofer-ILT in Aachen verwandeln Metall­pulver per...
Abb.: Mehrere Laser am Fraun­hofer-ILT in Aachen verwandeln Metall­pulver per 3D-Druck in ein Demon­strator-Bauteil für die zukünftige Trieb­werks­gene­ra­tion von Rolls-Royce. (Bild: Fh.-ILT)

Im Mittelpunkt der Aktivitäten von futureAM steht zum einen die ganz­heit­liche Sicht auf die digitale und physische Wert­schöpfung vom Auftrags­eingang bis zum fertigen metal­lischen 3D-Druck-Bauteil, zum anderen der Sprung in eine neue Techno­logie-Generation der additiven Fertigung. Eine wichtige Rolle spielt dabei das Virtual Lab, welches Kompetenzen digital bündelt und den gesamten AM-Prozess für alle beteiligten Partner trans­parent macht. „Wir stehen jetzt an der Schwelle zur indus­tri­ellen Umsetzung“, sagt Christian Tenbrock, Gruppen­leiter am Fraun­hofer-Institut für Laser­technik und futureAM-Projekt­leiter. „Die gemein­schaft­lich gewonnene Expertise soll nun in die indus­tri­elle Anwendung über­führt werden.“

Eine große Herausforderung bei futureAM war das instituts­über­greifende Zusammen­spiel aller Teil­nehmer, die teil­weise sehr unter­schied­liche Bereiche der gesamten Prozess­kette abdecken. Bewährt hat sich dabei das Virtual Lab, das als digitale Platt­form den Austausch über alle AM-Aufgaben­felder und -Akteure sicher­stellt. In diesem Kontext hat die Fraun­hofer-Einrichtung für additive Produktions­techno­logien beispiels­weise verschie­denste Software­tools zur Auslegung von AM-Bauteilen entwickelt. Auf diese Weise entstehen webbasierte Simulations-Tools für Metall-AM, mit denen auch Einsteiger arbeiten können.

Im Handlungsfeld Werkstoffe erforschte das Fraun­hofer-Institut für Werk­stoff- und Strahl­technik, welche Materialien sich in einem Bauteil miteinander kombinieren lassen und welche Probleme dabei auftreten. Unter anderem behandelten die Forscher die Erweiterung des einsetz­baren Spektrums additiv verarbeitungs­fähiger Hoch­temperatur­werk­stoffe und erforschten, wie diese in einer Multi-Material-Bauweise vereint werden können. Ein spannendes Ergebnis brachte das Zusammen­spiel von Laser­auftrag­schweißen und künst­licher Intelli­genz: Mit Hilfe KI-gestützter Prozess­analyse lassen sich verschie­denste Einfluss­faktoren analy­sieren und so der Fertigungs­prozess optimieren. Wie gut das bereits funktio­niert, demon­striert das Fraun­hofer-IWS an Multi-Material-Bauteilen aus Nickel und Aluminium. Je nach Bauteil­anforde­rungen nehmen die Forscher wahl­weise ein drittes oder viertes Element hinzu, um die Eigen­schaften exakt an den jeweiligen Anwendungs­fall anzu­passen.

Die Wissenschaftler vom Fraun­hofer-ILT entwickelten ein Demon­strator-System, das ein Maschinen­hersteller gebaut hat. Es ist eine Anlage zum 3D-Druck von Bauteilen im XXL-Maßstab: Per Laser Powder Bed Fusion entstand dank des großen Bauraums ein Demon­strator-Bauteil für zukünftige Triebwerks­generationen von Rolls-Royce. Möglich wird dies durch ein neues Maschinen­system mit mobilem Optik­system. Ähnliche Erfolge gab es auch beim extremen Hoch­geschwindig­keits-Laser­auftrag­schweißen, mit dem sich nun auch 3D-Bauteile herstellen lassen. Der neu entwickelte Prozess erlaubt extreme Auftrags­geschwindig­keiten bei gleich­zeitig hoher Detail­auflösung.

Großes Optimierungs­potenzial identi­fi­zierten die Forscher auch in der Nach­bearbeitung. Das Fraun­hofer-Institut für Werkzeug­maschinen und Umform­technik entwickelte daher im Rahmen des Projekts dafür eine automa­ti­sierte Lösung. Um das physische Bauteil zunächst zweifels­frei identi­fi­zieren und stets nach­ver­folgen zu können, wird bei der Fertigung ein Code ein­ge­arbeitet und später aus­ge­lesen. Dieser sorgt zudem für einen effizienten und störungs­freien Kopier­schutz. Im nächsten Schritt wird die Ist-Geometrie des ein­ge­spannten Bauteils von Laser­scannern erfasst und durch den Abgleich von Soll- und Ist-Geometrie die optimale Bearbeitungs­strategie abgeleitet. Die Bearbeitung erfolgt anschließend automatisch durch einen Roboter und wird im Prozess durch erneute 3D-Scans verifiziert.

Fh.-ILT / RK

Weitere Infos

 

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen