Forschung

Flüssigmetall mit unerwarteter Drehung

27.05.2022 - Turbulenzverhalten von Flüssigmetall zeigt überraschend kleinskalige Effekte.

Tief im Inneren der Erde herrschen derart hohe Temperaturen, dass ein Teil ihres Eisenkerns flüssig ist. Dieses flüssige Eisen ist ständig in Bewegung, wird laufend gedreht und umgewälzt. Dadurch wirkt es als Dynamo und verleiht unserem Planeten ein Magnetfeld. Eine Triebfeder für das komplexe Strömungs­verhalten des Eisens ist die Erdrotation, eine andere die Konvektion, getrieben durch Temperatur­unterschiede: Relativ heißes fließt Eisen im Inneren der Erde in kühlere Bereiche und sorgt dadurch für einen Wärme­transport. Doch wie sich diese Prozesse im Detail abspielen, ist nach wie vor unbekannt. Um sie besser zu verstehen, ist man auf theoretische Berechnungen und Computer­simulationen angewiesen, aber auch auf Experimente, die das Geschehen zumindest ansatzweise im Labor­maßstab simulieren.

 

Eines dieser Experimente fand nun am HZDR-Institut für Fluiddynamik statt. „Wir haben zwei zylindrische Gefäße genommen, ein relativ kleines in der Größe ungefähr eines Wassereimers und eines von der Gestalt eines Fasses mit einem Volumen von sechzig Litern“, erläutert Projektleiter Tobias Vogt. „Diese Gefäße haben wir mit einer metallischen Legierung aus Indium, Gallium und Zinn gefüllt, die bereits bei Raum­temperatur flüssig ist.“ Den Boden der Gefäße heizten die Fachleute, den Deckel dagegen kühlten sie, sodass zwischen unten und oben eine Temperatur­differenz von bis zu fünfzig Grad Celsius entstand.

Dieser beträchtliche Temperaturunterschied brachte das flüssige Metall im Inneren gehörig in Wallung: Getrieben durch die Konvektion stiegen lokal wärmere Strömungs­bereiche wie Säulen auf und durch­mischten sich – ähnlich wie in einer Lavalampe – mit dem kälteren Rest. Allerdings ist die verwendete Metall­legierung undurchsichtig, weshalb das Team zu einer speziellen Analyse­technik greifen musste: „Es ist eine Ultraschall-Methode, wie man sie aus der Medizin kennt“, erklärt HZDR-Abteilungs­leiter Sven Eckert. „Wir haben rund zwanzig Ultra­schall-Sensoren an den Gefäßen installiert, die erfassen können, wie das flüssige Metall im Inneren strömt.“

Als die Arbeitsgruppe die Daten analysierte, stieß sie auf eine Überraschung. Eigentlich hatten die Fachleute damit gerechnet, dass sich bei den Versuchen stets einzelne Strömungs­bereiche zu einer übergeordneten, ausgedehnteren Struktur zusammentun, großskalige Zirkulation genannt. „Das ist mit einem thermischen Wind vergleichbar, der die Wärme sehr effektiv zwischen Deckel und Boden transportieren kann“, berichtet Vogt. „Diesen thermischen Wind konnten wir im kleineren Gefäß auch tatsächlich beobachten – doch beim größeren Gefäß, dem Fass, brach der Wind bei großen Temperatur­unterschieden nahezu komplett zusammen.“ Dadurch wurde die Wärme nicht so effektiv transportiert, wie es eigentlich zu erwarten wäre. „Die Ursache sehen wir darin, dass sich statt einigen großen Wirbeln eine deutlich klein­skaligere Turbulenz ausbildet und dadurch der Wärme­transport weniger effektiv wird“, sagt Vogt.

Die neuen Erkenntnisse könnten Konsequenzen für die Prozesse im Erdinneren haben: „Um dieses Geschehen zu verstehen, versucht die Fachwelt die Resultate von Laborexperimenten auf die Größe der Erde zu extrapolieren“, erläutert Sven Eckert. „Doch wir haben jetzt gezeigt, dass die Wärme unter bestimmten Bedingungen weniger gut transportiert wird als es frühere Versuche nahegelegt hatten.“ Damit dürften auch bei der Vorhersage für die Erde andere Werte herauskommen. „Allerdings sind die realen Prozesse im Erdkern um ein Vielfaches komplexer als in unseren Labor­experimenten“, schränkt Tobias Vogt ein. „So wird die Strömung des flüssigen Eisens auch durch das Erdmagnetfeld und die Erdrotation beeinflusst – letztlich ist unser Wissen über diese Strömung noch ziemlich gering.“

Doch auch für die Technik könnten die neuen Erkenntnisse relevant sein – und zwar dort, wo mit flüssigen Metallen gearbeitet wird. So funktionieren manche Batterie­typen mit Flüssig­metallen, künftige Solarkraftwerke oder Fusions­reaktoren könnten eines Tages damit gekühlt werden. Um den Wärmetransport in Flüssig­metallen noch detaillierter unter die Lupe nehmen zu können, tüftelt das HZDR-Team derzeit an einer erweiterten Analyse­technik. „Spezielle Induktions-Sensoren sollen die Strömungen noch einmal deutlich detaillierter erfassen als bislang und regelrechte 3D-Bilder liefern“, beschreibt Sven Eckert. „Die ersten Messungen dazu sehen sehr vielversprechend aus.“

HZDR / DE

 

Weitere Infos

Physikunterricht neu denken!

Physik auf Lehramt an der Otto-von-Guericke-Universität Magdeburg studieren. Jetzt auch Quer- und Seiteneinstieg möglich.

Mehr erfahren

Physikunterricht neu denken!

Physik auf Lehramt an der Otto-von-Guericke-Universität Magdeburg studieren. Jetzt auch Quer- und Seiteneinstieg möglich.

Mehr erfahren