Dossier

Biophysik

Physik ist schon lange nicht mehr nur die „Wissenschaft von der unbelebten Materie“, nicht zuletzt waren es Physiker wie Erwin Schrödinger, Max Delbrück oder Friedrich Dessauer, die der modernen Biologie neue Forschungsfelder und -methoden eröffneten. Bei der Frage nach dem Ursprung des Lebens, der Eigenschaften von Zellen oder komplexer Biomoleküle, der Simulation biologischer Vorgänge spielt die Physik im Verbund mit anderen Disziplinen eine wichtige Rolle.

Articles

Andreas Offenhäusser und Sabrina Weidlich
07 / 2018 Seite 41
DPG-Mitglieder

Netzwerke der Erkenntnis

Das menschliche Gehirn ist ein Organ größter Komplexität. Trotz weitreichender Fortschritte in den Neuro­wissenschaften bleibt das detaillierte Verständnis der Aktivität und Interaktion dieses komplexen Systems bislang ein unerreichtes Ziel. Ein vielversprechender Versuch, die Signalprozessierung besser zu verstehen, ist die Bioelektronik, die von kleineren neuronalen Netzwerken ausgeht.

Die Funktionsweise des Gehirns zu verstehen, ist eine der größten Herausforderungen für Wissen­schaft und Technik. Unser Gehirn besteht aus einem Netzwerk von etwa 100 Milliarden Nervenzellen (Neuronen), die von einer noch größeren Anzahl an Gliazellen umgeben sind – nichtneuronalen Zellen mit Isolations- und Pufferfunktion. Die Neuronen bilden untereinander Kontakte, wobei jedes Neuron bis zu 10 000 solcher Synapsen ausbilden kann. Diese Kontaktstellen sind extrem veränderbar und bilden die Basis unserer motorischen, kognitiven und emotionalen Fähigkeiten.
Die Biowissenschaften und die Medizin haben in den letzten hundert Jahren wesentlich dazu beigetragen, die biologischen Vorgänge des menschlichen Körpers zu entschlüsseln. Die stürmische Entwicklung der Neurowissenschaften in den letzten Jahrzehnten ermöglichte es, die neuronalen Informationsprozesse besser zu verstehen, vor allem die molekularen Reaktionen und Reaktionsketten in Nervenzellen, welche die Eigenschaften von Netzwerk und Nervensystem beeinflussen. Jedoch bleibt das Gehirn als Ganzes – sowohl im gesunden als auch pathologisch veränderten Zustand – weiterhin ein Rätsel und damit auch das Verständnis der Pathophysiologie vieler neurologischer und neuropsychiatrischer Erkrankungen. Für viele dieser Erkrankungen kennen wir weder Heilmittel noch wirksame Behandlungen. Mittlerweile lassen sich den verschiedenen Hirnarealen spezielle Funktionen zuordnen oder Fehlfunktionen erkennen und lokalisieren. Doch die verwendeten klinischen Methoden, darunter Elektroenzephalographie (EEG), Computertomographie oder funktionelle Magnetresonanztomographie, erlauben es in der Regel nicht, die neuronale Kommunikation mit Einzelzellauflösung zu erfassen, sondern können lediglich die Aktivität großer Zellverbände detektieren. Selbst eine Auflösung im Sub-Millimeter-Bereich erfasst immer noch die Aktivität einiger zehntausend Neuronen. Daher sind Methoden notwendig, die mit ausreichend räumlicher und zeitlicher Auflösung Signale des Gehirns erfassen, um eine Analyse der neuronalen Kommunikation sowohl auf der Ebene von einzelnen Zellen als auch auf der von Netzwerken zu ermöglichen [1]. Ferner ist für therapeutische Zwecke eine bidirektionale Kommunikation wünschenswert, d. h. über die reine Untersuchung der neuronalen Sig­nale hinaus auch die Möglichkeit, die Netzwerk­aktivität gezielt zu beeinflussen...

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Ulrich F. Keyser
05 / 2018 Seite 41
DPG-Mitglieder

Physik in der Pore

Alles Leben basiert auf dem korrekten Zusammenspiel von Biomolekülen. Der Bauplan der Lebe­wesen ist in der Sequenz der Desoxyribo­nukleinsäure (kurz: DNS) gespeichert, und Proteine führen diesen gene­tischen Code aus. Für das Verständnis lebendiger Systeme ist es daher entscheidend, die Sequenz der DNS zu bestimmen sowie die Menge und Art der Proteine und Enzyme. Ein vielversprechender Ansatz dafür ist der Einsatz von Nanoporen als molekulare Sensoren.

Die Idee hinter dieser Methode besteht darin, Mole­küle durch die Änderung eines Ionenstroms durch ein kleines, wasser­gefülltes Loch – die Nano­pore – zu analysieren (Abb.1). Diese Idee geht auf Wallace H. Coulters fast 70 Jahre altes Patent zurück, das beschreibt, wie sich mikrometerkleine Partikel mithilfe von Strommessungen durch ein Loch in einer Glaskapillare untersuchen lassen [1]. Heutzutage ist die Detektion von Zellen und Bakterien mithilfe eines „Coulter-Counters“ Alltag in der Medizin. Während die Poren dabei mikrometergroße Durchmesser besitzen, beschäftigt sich die aktuelle Forschung in Physik, Chemie und Materialwissen­schaften mit so genannten Nanoporen für die Bio­sensorik, DNS- und RNS-Sequenzierung und Protein­analytik. Vor allem die DNS-Sequenzierung steht durch die mögliche Miniaturisierung dank der Nanoporen vor einer Revolution. (...)

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Timo Betz
02 / 2018 Seite 29
DPG-Mitglieder

Gut geschüttelt, nicht gerührt

In unserem Körper bewegen sich rote Blutzellen durch feinste Adern, deren Durchmesser wesentlich kleiner sind als die Zellen. Dazu müssen die Zellen ihre Form aktiv anpassen, was ihnen eine sehr weiche, elastische Zellmembran erlaubt. Diese unterliegt kontinuierlichen Fluktuationen, die sowohl durch rein thermische als auch aktiv metabolische Anregung entstehen. Wenn es gelingt, beide Anteile experimentell zu trennen und die aktive Bewegung im Detail zu verstehen, lässt sich damit vielleicht die Physik aktiver biologischer Motoren verstehen und so der Weg zu mikroskopisch kleinen Antrieben ebnen.

Spontane, zufällig erscheinende Fluktuationen spielen im Alltag nur bei Börse, Wetter oder Lotto eine Rolle. In der mikroskopischen Welt dagegen dominieren Fluktuationen. Mikroskopische Teilchen führen spontane Tänze auf, die Robert Brown schon vor etwa 200 Jahren beschrieben hat [1]. Überträgt man dieses Verhalten auf den Alltag, würde ein Cocktailschirmchen spontan im Martiniglas herumspringen. Erst Einsteins Arbeit zur Brownschen Molekular­bewegung führte die spontanen Fluktuationen mikroskopischer Teilchen mit der thermischen Anregung zusammen und verknüpfte Diffusion, thermische Energie und Mobilität bzw. Dissipation miteinander [2]. Diese Einsteinsche Relation erklärt, warum sich das Cocktailschirmchen üblicherweise nicht spontan bewegt, ein Mikroschirm in einem Mikroglas aber durchaus. Um ein Mikroschirmchen zu bewegen, ist eine Energie in der Größenordnung der thermischen Energie kBT erforderlich. Beim makroskopischen Schirm ist sie etwa 15 Größenordnungen höher. Das erklärt auch, warum ein klassischer Verbrennungs- oder Elektromotor nicht als Nanomaschine möglich ist und nicht bei Raumtemperatur laufen kann. Die Natur betreibt aber sehr robust Maschinen auf molekularer Skala. Unzählige molekulare Motoren in unserem Körper lassen unser Herz schlagen und ermöglichen es den Augen, diesem Text zu folgen [3].

Molekulare Motoren sind spezielle Proteine, welche die chemische Energie der Hydrolyse eines ATP-Moleküls nutzen, um ihre Form so zu ändern, dass sie sich zyklisch und in nanometerkleinen Schritten fortbewegen. Sie funktionieren sehr verlässlich, obgleich auch sie durch thermisch bedingte Fluktuationen kontinuierlich durchgeschüttelt werden. Biologische Zellen nutzen die molekularen Motoren nicht nur, um gegen thermische Fluktuationen anzukämpfen, sondern auch, um beispielsweise den Transport von Körperflüssigkeiten gegen die Diffusion zu ermög­lichen und Zugkräfte in Muskeln zu koordinieren. Die Motoren selber erzeugen aktiv zufällige Fluktuationen, welche die spontane Bewegung von intrazellulären Teilchen zusätzlich zu ihren thermischen Fluktuatio­nen beeinflusst. Diese aktiven Fluktuationen sind die logische Konsequenz der großen Anzahl unkorrelierter Kraftstöße im Zellinneren, welche die ständig arbeitenden molekularen Motoren erzeugen. Aus ihnen resultieren völlig zufällige Bewegungen, genau wie bei thermischen Fluktuationen. Daher wurde die aktive Komponente lange Zeit übersehen, und die spontanen Bewegungen intrazellulärer Teilchen wurden allein thermischen Fluktuationen zugeschrieben. Allein die Gleichgewichts-Thermodynamik diente dazu, die Mechanik zellulärer Prozesse zu beschreiben. Durch das Vernachlässigen der aktiven Komponente der Bewegungen kam es zu einer großen Anzahl fundamental falscher Schlussfolgerungen, wie neuere Forschungen zeigen...

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Jürgen Czarske, Jochen Guck, Raimund Schlüßler und Stephanie Möllmert
01 / 2018 Seite 37
DPG-Mitglieder

Berührungsloses Fühlen

Licht erlaubt es, die mechanischen Eigenschaften von Zellen und Geweben berührungslos und mit hoher Auflösung zu messen. Fortschritte in der Optik und Photonik haben zu einer neuartigen Bildgebung der elastischen Eigenschaften von Zellverbänden geführt. Diese Elastographie nutzt die Brillouin-Streuung, die auf einer Wechselwirkung von akustischen Phononen und Photonen basiert. Der Paradigmenwechsel von taktilen zu optischen Methoden führt zu vielen Alleinstellungsmerkmalen und ist für die Erforschung von Krankheiten von großer Bedeutung.

Die mechanischen Eigenschaften von biologischen Geweben sind eng mit ihren funktionalen Fähigkeiten verwandt und spielen in vielen Bereichen der Biologie und Medizin eine bedeutende Rolle. Hippokrates von Kos (* um 460 v. Chr.; † um 370 v. Chr.), der als Begründer der Medizin als Wissenschaft gilt, nutzte bereits diesen Zusammenhang. Beim Abtasten von Gewebe werden die mechanischen Eigenschaften erfühlt, woraus sich Erkenntnisse für viele Krankheiten folgern lassen. Heute wissen wir, dass verschiedene Krankheiten mit der Viskoelastizität von Gewebe korreliert sind. Koronare Arterien, die durch Arteriosklerose eine verringerte Elastizität aufweisen, können zu Herz-Kreislaufproblemen führen. Mechanisch geschwächte Knochen stellen bei einer Osteoporose ein ernsthaftes orthopädisches Problem dar. Die altersbedingte Versteifung der kristallinen Linse ist die primäre Ursache der Presbyopie (Alterssichtigkeit) und auch am Ausbruch von Katarakten beteiligt – die häufigste Ursache für Blindheit in unserer Welt. In der Onko­logie ermöglichen es die elastischen Eigenschaften, zwischen gesundem Gewebe und bösartiger Gewebe­neubildung (maligne Neoplasie) zu unter­scheiden. Bei der Vor­sorgeuntersuchung zu Brustkrebs wird abgetas­tet, um gehärtete Knoten zu erfühlen. Zudem beeinflusst die Steifigkeit der extrazellulären Matrix die Motilität von Zellen. Aus diesen Gründen ist es wichtig, die visko­elas­tischen Eigenschaften von Gewebe und Zellen zu erfassen. Doch welche physikalischen Methoden stehen dafür zur Verfügung? (...)

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Benjamin M. Friedrich
12 / 2017 Seite 53
DPG-Mitglieder

Schlagkräftiger Mikroantrieb

Zilien und Geißeln sind ein Bestseller der Natur und finden sich als langgestreckte Fortsätze auf der Ober­fläche einer Vielzahl von Zellen, beispiels­weise Spermien, Schleimhaut- und Sinneszellen. Das peitschende Schlagen der Zilien ermöglicht es den Zellen z. B., gezielt zu navigieren. An Zilien lassen sich modell­haft grundlegende Prozesse der Physik des Lebens verstehen, darunter Selbstorganisation, Nano-Biomechanik und aktive Prozesse fern des thermischen Gleichgewichts.

Zilien und Geißeln sind lange, dünne Strukturen auf der Oberfläche von Zellen und schlagen wie mikroskopische Peitschen mit einer Frequenz von bis zu 100 Hz. Dadurch setzen sie die umgebende Flüssigkeit in Bewegung, sodass Zellen darin schwimmen können (z. B. Spermien) oder Flüssigkeiten gepumpt werden (z. B. Schleim in den Atemwegen). Außerdem bestimmen gebrochene Symmetrien im Zilienschlag während der Embryonalentwicklung die Asymmetrie des späteren Körperbaus. Auch Pflanzenzellen besitzen Zilien. Grünalgen dienen beispielsweise als Modellorganismus, um die Physik des Zilienschlages zu verstehen, einschließlich emergenter Phänomene wie der Synchronisation mehrerer Zilien.

Ein Wort zur Terminologie: Die Unterscheidung in Zilien und Geißeln ist historisch bedingt und betrifft hauptsächlich die Länge dieser Fortsätze – Zilien sind kurze Geißeln. Beide unterscheiden sich in Aufbau und Funktionsmechanismus jedoch grundlegend von den ebenfalls Geißeln genannten Zellfortsätzen einiger Bakterien. Um Verwechslungen zu vermeiden, kommt im Folgenden nur der Begriff Zilium vor – stellvertretend für die Zellfortsätze nicht-bakterieller (also eukaryotischer) Zellen...

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Peter Gross und Stephan W. Grill
05 / 2017 Seite 35
DPG-Mitglieder

Muster aus Mechanik und Chemie

Der stetige technologische Fortschritt ermöglicht es, immer kompliziertere technische Maschinen wie den Large Hadron Collider am CERN oder den Airbus A380 zu bauen. Dennoch bleiben lebende Organismen wesentlich komplexer als alle jemals von Menschen gebauten Maschinen. Insbesondere assemblieren sich biologische Organismen selbst und bilden völlig autonom aufwändige Strukturen aus. Ein Ziel biophysikalischer Forschung ist es, die physikalischen Grundlagen dieser Prozesse der Selbstorganisation besser zu verstehen.

Die meisten mehrzelligen Organismen haben ihren Ursprung in einer einzigen Zelle, der so genannten Eizelle. Nach der Befruchtung teilt sich diese wiederholt, und aus den vielen entstandenen Zellen bildet sich Gewebe aus. Zwei verschiedene Prozesse sind dafür von Bedeutung: Einerseits sorgen Mus­terbildungsprozesse dafür, dass sich Signal­­proteine innerhalb des Embryos asymmetrisch verteilen, und etablieren dadurch ein „embryonales Koordinaten­system“ (Abb. 1). Andererseits verformt sich Gewebe im Embryo kontinuierlich mittels autonom erzeugter mechanischer Kräfte und Spannungen, um die eigent­liche Struktur und Form zu erreichen. Dieser Prozess der Entstehung von biologischer Form heißt Morpho­genese (Abb. 2). Musterbildung und Morphogenese lassen sich bis zu einem gewissen Grad in der Entwicklungsbiologie getrennt untersuchen [1, 2]. Eine Reihe neuer Studien deutet jedoch darauf hin, dass beide Prozesse im Wachstum lebender Organismen häufig untrennbar verwoben und nur gemeinsam zu betrachten sind [3].

Systeme, in denen regulative und mechanische Prozesse der Muster- und Formgebung verwoben sind, werden als mechanochemisch bezeichnet. Ein Beispiel hierfür sind mechanochemische Selbstorganisationsprozesse in Kolonien von Escherichia Coli-Bakterien (Abb. 3). Diese Bakterien sind mobil und bewegen sich mittels eines Bündels rotierender Flagella gerichtet vorwärts. Außer­dem können sie sich aktiv entlang eines Konzentrationsgradienten von Nährstoffen und in Richtung erhöhter Konzentrationen spezieller Boten­stoffe bewegen – eine Eigenschaft, die Chemotaxis genannt wird [4]. Dabei scheiden die E. Coli-Bakterien einen dieser Botenstoffe selbst aus. Als Folge davon bewegen sich mehr Bakterien auf Regionen zu, in denen die Konzentration der Botenstoffe erhöht ist. Gleichzeitig steigt aber die Botenstoffkonzentration in Regionen erhöhter Bakteriendichte an, sodass sich spontan eine räumlich inhomogene Konzentration von Bakterien und Botenstoffen einstellt. Verlieren die Bakterien die Fähigkeit, sich aktiv fortzubewegen oder Botenstoffe zu produzieren, verschwinden diese Muster: Ihre Bildung hängt sowohl von einem regulativen Prozess – der Produktion und Ausscheidung des Botenstoffs – als auch von einem mechanischen Prozess – dem aktiven Fortbewegen in Richtung erhöhter Botenstoffkonzentration – ab und wird deshalb als „mechanochemisch“ bezeichnet [3, 5]...

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.
Sarah Köster
10 / 2015 Seite 39

Physik der Intermediärfilamente

Lange Zeit galten Intermediärfilamente lediglich als statische Strukturproteine in der Zelle. Inzwischen häufen sich jedoch die Hinweise, dass sie durchaus dynamisch hierarchische Strukturen bilden, als „Fracht“ mit molekularen Motoren wechselwirken und die mechanischen Eigenschaften von Zellen stark beeinflussen. So können Mutationen dieser Proteine die Ursache schwerer Krankheiten sein. Das Interesse von Biophysikern an der Erforschung von Intermediärfilamenten ist daher in den letzten Jahren stark gestiegen.

Kleine Mutationen im Erbgut können schwerste Erkrankungen auslösen. Die amyotrophe Lateral­sklerose (ALS), die Alexander-Krankheit, bei der die weiße Substanz von Gehirn und Rückenmark zunehmend abgebaut wird, die Progerie (eine Erkrankung, die zu vorzeitigem Altern führt) und zahlreiche Hautkrankheiten rühren alle von Mutationen in derselben Klasse von intrazellulären Proteinen her, den Intermediärfilamenten (IF) [1]. Noch ist man weit davon entfernt, die zugrunde liegenden Mechanismen hinter all diesen Krankheiten zu verstehen. Jedoch ist es ein wichtiges Ziel der medizinischen Forschung, einzelne Intermediärfilamente sowie deren Strukturen in der Zelle genau zu unter­suchen. Während der Fokus dabei zunächst auf den biologischen und biochemischen Zusammenhängen lag, wurde in den letzten Jahren zunehmend klar, dass auch biophysikalische Prozesse das Verhalten dieser Proteine und der hierarchischen Strukturen, die sie bilden, definieren [2, 3].

Intermediärfilamente bilden zusammen mit Aktinfilamenten und Mikrotubuli, ergänzt durch zahlreiche Bindeproteine, welche die Filamente verlinken und bündeln, sowie Motorproteine, die sich entlang der Filamente bewegen und dadurch Kräfte erzeugen, das Skelett der Zelle (Abb. 1). Dieses Zytoskelett bestimmt unter anderem die mechanischen Eigenschaften von Zellen und Gewebe, beispielsweise die Reißfestigkeit der Haut, die Elastizität von roten Blutkörperchen oder die Krafterzeugung in Muskelzellen. Das Zytoskelett ist eine Art „Verbundmaterial“, das durch die Kombination dreier verschiedener Filamenttypen völlig neue Eigenschaften hervorbringt [4]...

weiterlesen
Ulrich Schwarz
07 / 2015 Seite 29

Physik der Zelladhäsion

Der menschliche Körper besteht aus mehr als zehn Billionen Zellen, die eine stabile Einheit bilden, aber auch dynamische Vorgänge wie das Schließen einer Wunde erlauben. Was hält die Zellen in unserem Körper so zusammen, dass er strukturell stabil und dynamisch zugleich sein kann? Tatsächlich sind dies viele schwache bio­molekulare Bindungen zwischen den Zellen und ihrer Umgebung, die sich ständig öffnen und schließen.

Im menschlichen Körper finden sich rund 3 · 1013 Zellen, die typischerweise etwa 10 µm groß sind. Im Laufe des Lebens werden etwa 1016 Zellen gebildet. Nach der Embryonalentwicklung stellt sich ein Gleichgewicht zwischen Zellteilung und -verlust ein, sodass sich die Erneuerung nahezu gleichmäßig über die Lebenszeit von etwa 80 Jahren verteilt. Demnach erzeugt unser Körper neue Zellen und verliert alte mit einer Frequenz von etwa 1016/109 s = 107 Hz. Der menschliche Körper ist also in einem Fließgleichgewicht mit sehr starker Austauschdynamik, obwohl wir ihn subjektiv als relativ statisches System wahrnehmen.

Auch bezüglich der räumlichen Anordnung der Zellen ist unser Körper hochdynamisch. Viele Zellen bewegen sich auch nach Abschluss der Entwicklungsphase, ohne dass wir dies wahrnehmen. So bewegen sich Immunzellen ständig durch den Körper, um Pathogene zu finden und zu bekämpfen, und Lernprozesse im Gehirn sind mit der Bewegung von Neuronen verbunden. Am augenfälligsten ist die Zellbewegung, wenn sich eine Wunde innerhalb von Tagen wieder schließt. Diese Dynamik der Zellen kann auch eine Bedrohung werden, wenn sich nämlich metastasierende Krebszellen im Körper ausbreiten...

weiterlesen
Kai Dierkes und Benjamin Lindner
04 / 2014 Seite 37

Haariges Hören

Bis zu 15 Millionen Menschen in Deutschland klagen gelegentlich oder auch häufiger über Hörprobleme. Die möglichen Ursachen sind vielfältig, meist jedoch ist es Lärm, der die Sinneszellen im Innenohr irreversibel schädigt. Nicht nur Mediziner und Biologen erforschen das Gehör, sondern auch Physiker. Neben Forscherneugier eint sie die Hoffnung, dass unser wachsendes Verständnis für die biophysikalische Funktionsweise des Ohres auch zu neuen diagnostischen und therapeutischen Ansätzen führen kann.

Wir können außerordentlich leise Töne wahrnehmen, die sich von den lautesten (nicht hörschädigenden) Tönen um beeindruckende zwölf Größenordnungen in der Schallintensität unterscheiden. Außerdem sind wir in der Lage, Töne auseinanderzuhalten, die sich um weniger als ein Prozent in ihrer Frequenz unterscheiden (der Halbtonabstand zweier Klavier­tas­ten entspricht etwa sechs Prozent). Bemerkenswert ist, dass sich diese Eigenschaften nicht nur in der Aktivität bestimmter Gehirnareale manifes­tieren, sondern schon auf rein mechanischer Ebene in der Hörschnecke, der Cochlea (Abb. 1). Die zugrundeliegenden Mechanismen sind bisher trotz vieler Fortschritte noch nicht verstanden [1,  2].

Zu den wichtigsten neueren Erkenntnissen zählt, dass sich das Ohr nicht als passiver Detektor verstehen lässt. Vielmehr zeigen Messungen mit modernsten Methoden, dass es sich bei der Gehörschnecke um einen aktiven Verstärker handelt, d. h. um ein Organ, das Energie benötigt, um seine Empfindlichkeit und Frequenzauflösung aufrecht zu erhalten [4]. Eine erstaunliche Begleiterscheinung der Aktivität ist die mechanische Erzeugung von Tönen im Ohr selbst ohne äußere Schallsignale. Diese otoakustischen Emissionen unterhalb der Hörschwelle lassen sich mit empfindlichen Mikrophonen aufzeichnen und zur medizinischen Diagnostik verwenden. Noch herrscht keine Einigkeit darüber, wie genau der aktive Verstärker im Innenohr implementiert ist. Als erwiesen gilt jedoch, dass ein spezieller Zellentyp einen seiner zentralen Elemente bildet: die Haarzellen, die erstaunliche dynamische Merkmale aufweisen. ...

weiterlesen
Dirk Drasdo
11 / 2013 Seite 29

Lebendes Gewebe im Modell

Die Leber verfügt über die erstaunliche Eigenschaft, sich auch nach großen Schädigungen schnell wieder regenerieren zu können. Wie dies gelingt, ist eine bedeutende medizinische Frage, die sich nur interdisziplinär lösen lässt. Im Wechselspiel von Beobachtung, Modellierung und Experiment ist es mittlerweile gelungen, den zugrunde liegenden Mechanismen auf die Spur zu kommen. Diese Einblicke in die Leber­regeneration versprechen neuartige Therapie-Ansätze bei Zirrhose und anderen Schädigungen der Leber.

Als größtes Organ des Menschen spielt die Leber eine zentrale Rolle für den gesamten Stoffwechsel. Sie ist nicht nur für die Aufnahme von Nährstoffen zuständig, sondern entgiftet auch das Blut. In der griechischen Mythologie bestrafte Zeus Prometheus dadurch, dass ein Adler jeden Tag einen Teil seiner Leber fraß, die sich anschließend wieder erneuerte, nur um am nächsten Tag abermals gefressen zu werden. Tatsächlich verfügt die Leber über eine bemerkenswerte Regenerationsfähigkeit: Bis zu 70 Prozent ihrer Masse kann der menschliche Körper nach einer Schädigung wiederherstellen. Leberschäden entstehen durch Virusinfekte, Alkohol oder bestimmte Medikamente. Eine Überdosis des Schmerzmittels Paracetamol gehört zu den häufigsten Ursachen für akutes Leberversagen. Die Substanz verursacht eine charakteristische Schädigung, bei der speziell das Zentrum der Leberläppchen betroffen ist. Von diesen funktionellen „Bausteinen“ der Leber besitzt der Mensch rund eine Million. In ihrer Mitte befindet sich die Zentralvene. Eine Vergiftung durch Paracetamol-Überdosis zerstört in jedem Leberläppchen das Gewebe, welches die Zentralvene umgibt.

Experimente mit Mäusen, deren Leber durch Tetrachlorkohlenstoff geschädigt wurden, das ähnlich wie Paracetamol wirkt, belegen die erstaunliche Regenerationsfähigkeit der Leber. Innerhalb einer Woche hatte sie sich bei den Labortieren vollständig regeneriert. Doch wie bewerkstelligt dieses Organ eine solch erstaunliche Leistung? Wie wir im Folgenden sehen werden, lässt sich diese Frage mit einer Kette aus Experimenten, Bildanalysen und Computersimulationen beantworten.

Als Referenz­zustand dient die ungeschädigte Leber, deren Mikrostruktur mit einem Konfokalmikroskop vermessen wurde. Spezielle Fluorenszenzfarbstoffe zur selektiven Färbung erlauben es, in den optischen Schnittbildern einzelne Strukturen sichtbar zu machen und diese am Computer zu einem dreidimensionalen Bild zusammenzusetzen. Die im Bild enthaltene Information lässt sich durch Weiterverarbeitung der Lage, Position, Dichte und Form der Zellen sowie der Architektur der Blutgefäße quantifizieren. Aus den Verteilungen über den Parametern wurde ein repräsentatives Läppchen konstruiert, das als Startkonfiguration für die anschließende Computersimulation dient und an dem sich die Architektur mit Portalvene und -arterie, dem Netzwerk kleiner gefensterter Blutgefäße (die ­„Sinusoide“) sowie Zentralvene gut verdeutlichen lässt (Abb. 2c). Die spezielle Architektur des Leberläppchens stellt den optimalen Stoffaustausch zwischen Blut und den Hepatozyten, den „Arbeitstieren“ der Leber, sicher. 75 Prozent des Blutes fließen über die Portal­vene, der Rest als sauerstoffreiches Blut über die Portalarterie in das Läppchen ein. Jedes Volumenelement Blut fließt genau durch eines der Läppchen. ...

weiterlesen
Berenike Maier
10 / 2012 Seite 33

Wie Gene wandern

Höhere Lebewesen pflanzen sich sexuell fort. Die genetische Erbinformation von Vater und Mutter durchmischt sich dabei so, dass genetische Vielfalt zwischen den Individuen entsteht. Wie aber tauschen Bakterien Gene aus? Einzelmolekülexperimente haben gezeigt, dass Bakterien sehr effiziente molekulare Maschinen besitzen, die es ihnen erlauben, sogar artfremde DNA zu importieren. Genetische Schaltprozesse können die Produktion dieser Maschinen regulieren.

Im Jahr 1928 machte Frederick Griffith eine erstaunliche Beobachtung: Er isolierte und kultivierte das Bakterium Streptococcus pneumoniae, einen häufigen Erreger von Lungenentzündung. Dabei fand er heraus, dass die Bakterien entweder in virulenter oder in avirulenter Form vorkommen. Virulente Bakterien sind von einer Kapsel umhüllt, die dazu führt, dass die Bakterien dem Immunsystem ihres Wirts entkommen. Griffith mischte abgetötete virulente und lebende avirulente Bakterien und infizierte damit Mäuse, die wenige Tage nach der Infektion starben. Die nähere Untersuchung ergab, dass die ursprünglich unbekapselten Bakterien eine Kapsel entwickelt hatten. Heute wissen wir, dass diese Bakterien die DNA der toten virulenten Bakterien aufgenommen und dadurch das Gen für die Kapselbildung akquiriert haben. Dieser Prozess heißt Transformation. Der Versuch von Griffith ebnete den Weg, DNA als Träger der Erb­information zu identifizieren.
Bakterien bestehen aus einer einzigen Zelle und vermehren sich durch Zellteilung, d. h. die Mutterzelle wird einfach dupliziert. Daher haben die Tochterzellen das gleiche Genom (Infokasten) wie ihre Mutterzelle. Durch spontane Mutation und anschließende Selektion verändert sich das Genom von Bakterien langsam. Eine solche Veränderung kann einen Selektionsvorteil mit sich bringen, zum Beispiel bei der Adaptation an wechselnde Umweltbedingungen. Schneller können sich Bakterien beim sog. horizontalen Gentransfer adaptieren, bei dem sich ein Gen mit Selektionsvorteil direkt auf ein anderes Bakterium überträgt. Ein medizinisch besonders wichtiger Selektionsvorteil ist Resistenz gegen Antibiotika, welche ebenfalls durch spontane Mutation von Genen entsteht. Wenn verschiedene Bakterien diese Resistenz­gene untereinander austauschen, können schnell multiresistente Stämme entstehen. Weiterhin werden wie eben beschrieben Virulenzgene ausgetauscht. Statistische Analysen der Genome von verschiedenen Bakterienarten weisen darauf hin, dass sie einen großen Teil ihres gesamten Genoms durch horizontalen Gentransfer akquiriert haben, z. B. etwa 18 % im Darmbakterium Escherichia coli. ...

weiterlesen
Jochen Guck
06 / 2012 Seite 39

Lebendige Optik

„Most of the properties of the eye are wonderful […], but some are apparently stupid.“ So urteilte Richard Feynman in seinen berühmten „Lectures on Physics“ über einen offensichtlichen, grundlegenden Fehler im Bauplan des Auges: Das Licht muss erst die gesamte einige hundert Mikrometer dicke Netzhaut durchdringen, bevor es auf die lichtempfindlichen Zellen trifft. Wie kann es sein, dass wir dennoch scharf sehen können?

machen wir uns jedoch Gedanken darüber, wie Sehen im Detail funktioniert und welche Schritte nötig sind, damit Licht vom Auge aufgenommen und in eine wahrheitsgemäße und brauchbare Repräsentation unserer Umgebung verwandelt wird. Neben den biologischen Aspekten ist es offensichtlich, dass auch die Physik eine wichtige Rolle spielt, wenn elektromagnetische Strahlung durch die brechenden Medien im Auge auf die Netzhaut abgebildet und dort letztendlich in einen biochemisch-elektrischen Reiz zur weiteren Verarbeitung durch das Gehirn umgewandelt wird.

Sicherlich ist es nicht überraschend, dass biologische Organismen irgendwann einmal während der Evolution auf die Sonne aufmerksam wurden und spezielle sensorische Fähigkeiten entwickelten, um sich dieser Energiequelle zuzuwenden oder sich daraufhin zuzubewegen. Ein schönes Beispiel hierfür ist der Schlangenstern, ein enger Verwandter der Seesterne: Dieser besitzt zwar keine Augen, hat aber die periodische Form seines aus einem Kalzit-Einkristall bestehenden Skeletts so angepasst, dass es lokal Licht auf lichtsensitive Zellen fokussiert und dabei sogar sphärische Aberrationen und Doppelbrechung minimiert.

Bei Wirbeltieren, und besonders bei Raubtieren und den Primaten, ist im Laufe der Evolution aus dem zunächst sehr primitiven Sehorgan ein hochentwickeltes und fein abgestimmtes Instrument mit beeindruckenden Eigenschaften entstanden. Zunächst einmal sind Linse, Hornhaut (Cornea) und die dazwischenliegende Flüssigkeit dafür zuständig, eine qualitativ hochwertige Abbildung der Umgebung auf der Netzhaut (Retina) zu erzeugen. Dabei spielen selbstverständlich die gleichen Aspekte eine Rolle wie bei jedem optischen Aufbau. Die vom Licht durchlaufenen Materialien müssen von hoher optischer Transparenz sein. Die Linsenzellen, aus denen die Linse besteht, verlieren deshalb während der Entwicklung ihren Zellkern und andere Organellen, um das Licht nicht zu streuen. Muskeln können die Form der Linse so verändern, dass sie Gegenstände in unterschiedlichem Abstand scharf auf der Netzhaut abbilden kann. Darüber hinaus variiert sogar der Brechungsindex der Linse in radialer Richtung so, dass chromatische und sphärische Aberrationen korrigiert werden. Und schließlich sind die Signaltransduktion des Lichts in der Netzhaut und die weitere Signalverarbeitung derart angelegt, dass sich sowohl Lichtintensitäten bei hellem Tageslicht als auch bei dunkler Nacht, wenn nur die Sterne als Lichtquelle vorhanden sind, noch sinnvoll verarbeiten lassen [1]. Kein technischer Detektor ist über acht Dekaden in der Lichtintensität hinweg derart leistungsstark. Alleine diese wenigen Beispiele sollten verdeutlichen, dass das Auge durch die Evolution auch im Hinblick auf diverse physikalische Eigenschaften hin optimiert wurde. ...

weiterlesen
Thomas K. Henning
10 / 2017 Seite 35
DPG-Mitglieder

Schritte zum Leben

Die Frage nach dem Ursprung des Lebens ist alt und trotz vieler Ansätze noch unbeantwortet. Die Entdeckung extrasolarer Gesteinsplaneten hat das Interesse daran neu entfacht und in einen astronomischen Kontext gestellt. Neue Konzepte, um den Übergang von lebloser zu lebender Materie zu verstehen, erfordern es, physikalische und chemische Perspektiven stärker zu berücksichtigen.

Die Entstehung des Lebens auf der Erde und möglicherweise auf anderen erdähnlichen (terrestrischen) Planeten steht am Ende einer langen Kette von Entwicklungsprozessen im Universum, von der Bildung der Galaxien bis hin zur Entstehung von Sternen und der mit ihnen verbundenen Planetensysteme [1, 2]. Die Entwicklung von Sternen hängt wiederum unmittelbar mit der Kernsynthese der für das Leben notwendigen Elemente zusammen, seien es Kohlenstoff, Sauerstoff und Stickstoff oder Phosphor und Schwefel. Zusammen mit Wasserstoff bilden sie die Grundelemente für die DNA, welche die Erb­information trägt, und die in Proteinen vorkommenden Aminosäuren.

Unterdessen deuten viele astronomische Beobachtungen darauf hin, dass die Mehrzahl der Planeten Gesteinsplaneten sind, wie etwa der kürzlich um den sonnennächsten Stern Proxima Centauri entdeckte Planet [3] (Abb. 1). Dieser gehört zu einer Handvoll bislang entdeckter Gesteinsplaneten, die sich in der „bewohnbaren“ Zone befinden (Abb. 2), also dort, wo flüssiges Wasser existieren könnte. Proxima Centauri (Spektralklasse M6) ist allerdings ein sehr aktiver Stern, sodass unklar bleibt, ob tatsächlich Wasser auf dem Planeten existieren kann...

weiterlesen
Dieser Artikel ist nur für DPG-Mitglieder zugänglich. Bitte melden Sie sich an oder registrieren Sie sich um auf diesen Artikel zugreifen zu können.

News

Forschung

Mit dem Zweiten hört man mehr

29.11.2012 - Die Physiker Birger Kollmeier und Volker Hohmann vom Oldenburger Exzellenzzentrum für Hörforschung sowie der Ingenieur Torsten Niederdränk von der Siemens AG in München...

Forschung

Röntgenpionier, Erfinder und Politiker wider Willen

15.02.2013 - Vor fünfzig Jahren starb Friedrich Dessauer, der nicht nur Pionier der Biophysik und Röntgenmedizin war, sondern sich auch politisch stark engagierte.

Forschung

Physiker mit großen Nerven

22.11.2017 - Vor 100 Jahren wurde der Biophysiker und Nobelpreisträger Andrew Fielding Huxley geboren.

Forschung

Preisgekrönte Biophysik

08.12.2016 - Die beiden Physiker Frank Jülicher und Joachim P. Spatz gehören zu den DFG-Leibniz-Preisträgern 2017.

Links

Die äußerst leisen, kompakten, ölfreien Pumpen

Die Modelle der neuen Scrollpumpenbaureihe HiScroll von Pfeiffer Vacuum sind ölfreie, hermetisch dichte Vakuumpumpen. Die kompakte Bauweise sowie leiser und vibrationsarmer Betrieb zeichnen die Neuentwicklungen besonders aus.

Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von Pfeiffer Vacuum in 3D!

 

HiScroll FunktionsVideo

 

Erfahren Sie mehr über die neue HiScroll Vakuumpumpe

Newsletter

Die Physik in Ihrer Mailbox – abonnieren Sie hier kostenlos den pro-physik.de Newsletter!

Einen Schritt weiterdenken – die neue Generation der Scrollpumpen:


Erleben Sie unsere neue HiScroll – die ölfreien Vakuumpumpen von
Pfeiffer Vacuum.

 

Erfahren Sie mehr über die HiScroll Vakuumpumpen

Bleistift, Papier und die eine Idee, die die Zukunft verändert

Quantentechnologie, künstliche Intelligenz, additive Fertigung: Michael überführt neueste Erkenntnisse in fortschrittliche Technologien bei ZEISS. Was ihn antreibt? „Einfluss darauf nehmen, wie unsere Gesellschaft lebt und arbeitet.“

Mehr Informationen

Bleistift, Papier und die eine Idee, die die Zukunft verändert

Quantentechnologie, künstliche Intelligenz, additive Fertigung: Michael überführt neueste Erkenntnisse in fortschrittliche Technologien bei ZEISS. Was ihn antreibt? „Einfluss darauf nehmen, wie unsere Gesellschaft lebt und arbeitet.“

Mehr Informationen