Überblick

Extrem und strahlend

Die elektromagnetische Strahlung aus Urknall-Materie enthält Informationen zum Zustand sichtbarer Materie unter extremen Bedingungen.

  • Tetyana Galatyuk, Hendrik van Hees, Ralf Rapp und Jochen Wambach
  • 10 / 2018 Seite: 41

Jede Form sichtbarer Materie strahlt. Dabei gibt die Frequenzverteilung Aufschluss über die Temperatur, die Zusammensetzung und Dynamik der elektrischen Ladungsträger und oft auch über das kritische Verhalten in der Nähe von Phasenübergängen. Bei extremer Temperatur und Dichte von Kernmaterie zeigen die Spektren reeller und virtueller Photonen den Übergang von hadronischer zu Quark-Gluon-Materie an und tragen so wesentlich zum Verständnis der Erzeugung von Masse durch die starke Wechselwirkung bei.

Kurze Zeit nach dem Urknall vor 13,8 Milliarden Jahren bestand das Universum aus einem heißen Plasma von Elementarteilchen, die das Standardmodell der Teilchenphysik beschreibt (Infokasten). Für die frühe Entwicklung des Universums während der kosmischen Expansion spielten zwei fundamentale Phasenübergänge eine entscheidende Rolle: Der eine fand etwa zehn Pikosekunden nach dem Urknall statt, getrieben durch die elektroschwache Wechselwirkung. Dagegen bestimmte die starke Wechselwirkung den zweiten nach etwa zehn Mikrosekunden. Kondensationsphänomene, die vermutlich für die Masse der heute sichtbaren Materie verantwortlich sind, begleiteten beide Übergänge. Im elektroschwachen Phasenübergang kondensierte das im Jahr 2012 am Large Hadron Collider des CERN entdeckte Higgs-Teilchen und erzeugte die Massen der Leptonen, der schweren Z- und W-Bosonen sowie die „nackten“ Massen der Quarks. Im Übergang der starken Wechselwirkung verbanden sich Quarks und Gluonen zu Hadronen unter permanentem Einschluss der Farbladung („Confinement“), wodurch mehr als 98 Prozent der Masse der sichtbaren Materie entstanden sind. Den genauen Ablauf lassen auch mehr als 30 Jahre intensiver Forschung offen.

Heute bietet sich uns die faszinierende Möglichkeit, den frühen Zustand des Universums in der Nähe der starken Phasenumwandlung bei Stößen schwerer Atomkerne mit extrem hohen Energien erneut zu erzeugen. Dabei geht die kinetische Stoßenergie zu einem Großteil in der Produktion von mehreren tausend Hadronen auf. Systematische Analysen der gemessenen Teilchensorten und deren Energie- und Impulsverteilungen liefern die Evidenz für die Erzeugung einer extrem heißen Reaktionszone. Dieser „Feuerball“ erreicht sehr schnell den Zustand eines lokalen thermischen Gleichgewichts und expandiert explosiv nach den Gesetzen der relativistischen Hydrodynamik (Abbildung). Bei den höchsten Stoßenergien, die derzeit mit 5 TeV pro Nukleonenpaar im Schwerpunktsystem beim Large Hadron Collider zur Verfügung stehen, lässt sich die dazugehörige Zustandsgleichung, die beispielsweise Druck und Energiedichte in Beziehung setzt, präzise aus der Quantenchromodynamik berechnen. Es herrscht weitgehend Einigkeit, dass die Energiedichten der frühen Entwicklungsphasen des Feuerballs ausreichen, um ein Quark-Gluon-Plasma zu erzeugen. Diese stark wechselwirkende Materie, die auch im frühen Universum vorlag, besteht aus masselosen Gluonen, nahezu masselosen up- und down-Quarks und den etwas schwereren strange-Quarks. Was lernt man aus diesen Experimenten über die Mechanismen der Massen­erzeugung in der starken Wechselwirkung? ...

Share |
thumbnail image: Extrem und strahlend

Aktuelles Heft

Inhaltsverzeichnis
10 / 2018

thumbnail image: PJ 10 2018

LHCb und neue Physik

Quark-Gluon-Plasma

Berufsreportage Energie

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2018 deutsch / englisch

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer