PhD fellowship on Nanodiamond-based Bioimaging for Medical Applications

Development of a technique for detection and imaging of pathological tissue using functionalized fluorescent nanodiamonds

The goals of the Ph.D. research are:
(1) build an optical magnetic resonance imaging system for detecting functionalized NDs in tissue. Tests will be performed on phantoms in strongly scattering media.
(2) Develop techniques to functionalize NDs so that they become markers for pathologies of interest, e.g. endometriosis and tumors. The functionalization and imaging will be studied and verified on cell cultures.

The work will be done in the framework of a cooperation between the Institut für Experimentalphysik and the university's medical centre. Preliminary studies have already been performed. The fellowship is provided through the Düsseldorf School of Oncology, see:
The work is intended to result in the award of a Ph.D. in Physics.

An introduction to the topic follows:

Nanodiamonds (NDs) are diamond crystals with sizes in the range of a few nanometers to a few 100 nm in diameter. Omnipresent defects in NDs can be excited by a laser to fluoresce in the red spectral region. This fluorescence is intense, and, in contrast to other fluorescent labels, does not exhibit photobleaching.
The combination of three salient features makes NDs candidates for a powerful novel approach to biological sensing and imaging. First, NDs have been shown to be nontoxic if their size is not too small. NDs can be inserted in cells which continue with normal activity. Second, the surface of NDs can be functionalized so that a large variety of molecules can be bound to it. These molecules can be chosen to bind to desired target molecules in cells. These functionalized NDs then serve as biomarkers. Third, the flurorescent defects have a spin structure that allows optically detected magnetic resonance. The resonance frequency is modified by an applied magnetic field. If a spatially varying magnetic field is applied to a specimen, only the NDs located close to the zero of the magnetic field contribute to a fluorescence signal. This means that optically detected magnetic resonance imaging is possible. Similar to conventional MRI, it is possible to image deep inside a body, in a non-invasive manner. Different from conventional MRI, the detection is done by ultrasensitive photon detection. The crucial advantage of NDs in this context is that they can be functionalized to become markers, i.e. to bind to particular molecules in the body, resulting in a 3D-, non-invasive, selective imaging modality.

Ihr Ansprechpartner:

Bitte senden Sie Ihre Bewerbung an:

  • Prof. Stephan Schiller
  • Institut für Experimentalphysik
  • 40225 Düsseldorf
  • E-Mail:
  • Telefon: 0211-8112317

Promovierte Physiker (m / w)

  • Basycon Unternehmensberatung GmbH

Ihre Stellenanzeige

Der Rund-um-Service für Ihre Stellenanzeige - Print, Online und
im Newsletter schon ab € 450,-
(zzgl. MwSt.)
Interesse? Dann klicken Sie hier.

Achtung! Neue Preise ab
01. Oktober 2016!

„Physik Jobs“ – der Twitter-Kanal rund um den­markt


Um ein Stellenangebot aufgeben zu können, registrieren Sie sich bitte bei pro-physik. Die Registrierung ist unverbindlich und kostenlos. Falls Sie schon bei pro-physik angemeldet sind, brauchen Sie sich nur einzuloggen. Ihre Daten werden nicht an Dritte weitergegeben.


Warum reale Linsensysteme nur multiphysikalisch simuliert werden können

  • 22. June 2017

Die numerische Simulation gehört mittlerweile zum Standardrepertoire in der Forschung und Entwicklung von optischen Komponenten, Linsensystemen und Objektiven. Die optischen Eigenschaften können mit der Raytracing-Methode einfach und effizient charakterisiert werden.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer