Überblick

Hochgeladene Taktgeber

Wie sich hochgeladene Ionen für noch genauere optische Uhren nutzen lassen.

  • Piet O. Schmidt und José R. Crespo López-Urrutia
  • 10 / 2016 Seite: 25

Nach Wasserstoff und Helium sind wohl hochgeladene Ionen die häufigste Form baryonischer Materie im Universum. Diese fristen allerdings im Labor meist ein Nischendasein, da ihre Anwendungsmöglichkeiten außerhalb der fundamentalen Forschung und der Astro- und Plasmaphysik beschränkt scheinen. Dies könnte sich nun ändern. Eine Reihe vielversprechender Vorschläge zeigt, dass sie darüber hinaus ein großes Potenzial für eine neue Generation optischer Uhren besitzen.

U nsere Sonne besteht neben Wasserstoff und Helium hauptsächlich aus hochgeladenen Ionen [1], da 90 Prozent ihrer Masse bei Temperaturen jenseits von vier Millionen Kelvin vorliegt. Die bei der Fusion im Zentrum der Sonne freigesetzte Energie muss in Form von Röntgenstrahlung über Hunderttausende von Jahren durch die dichte Sternmaterie bis in die äußeren Schichten diffundieren [2]. Dabei werden die Photonen vorwiegend von hochgeladenen Ionen gestreut, absorbiert und wieder emittiert. Um die tiefen Gravitationspotentiale von einzelnen Galaxien und deren Anhäufungen herum sind die meisten Atome in noch größerem Ausmaß hochionisiert, wie auch in den Akkretionsscheiben von Schwarzen Löchern. Und das kosmische Geflecht, welches Galaxienhaufen mitein­ander verknüpft, vereint mehr Materie als alle Galaxien zusammen bei Temperaturen jenseits von 100 000 K [1]. Hochgeladene Ionen werden seit Jahrzehnten spektroskopisch untersucht, um Vorhersagen der Quanten­elektrodynamik in starken Feldern zu überprüfen, wie z. B. den g-Faktor von gebundenen Elektronen [3].
Bei hohen positiven Ladungszuständen wächst in der einfachen Bohrschen Theorie die Aufspaltung der Energieniveaus etwa quadratisch mit der nichtkompensierten Ladung des Kernes an. Vergleichen wir zum Beispiel in diesem Bild ein Wasserstoffatom H (Kernladungs- oder Atomzahl Z = 1) mit wasserstoffartigem Uran (U91+), ein Ion mit nur noch einem seiner 92 Elektronen im neutralen Zustand. Dieses Elektron sieht also 92 Protonen und wird daher viel stärker angezogen als das Elektron im Wasserstoff­atom. Die Quantisierung des Drehimpulses muss beim Elektron immer erfüllt sein. Kommt es aufgrund der höheren Ladung näher an den Kern heran, muss es sich umso schneller um diesen „drehen“. Dadurch schrumpft der Radius der ersten Bohrschen Bahn um den Faktor 92. Dies, zusammen mit der 92-fachen positiven Ladung, ergibt eine 92 mal 92 höhere Bindungsenergie als im Wasserstoffatom, im vorliegenden Fall 130 000 eV gegenüber 12 eV. Man spricht daher von einer quadratischen „Skalierung“ der Bindungsenergie mit der Kernladungszahl, sie skaliert also mit Z 2. Daher leuchten hochgeladene Ionen vorwiegend im Vakuumultravio­letten- und Röntgenbereich. Optische Uhren benötigen jedoch elektronische Übergänge, deren Frequenzen mittels Laser gemessen werden [4, 5]; folglich werden Atome und Ionen mit im sichtbaren Spektralbereich anregbaren Übergängen gesucht. Wie kommt man aber zu solchen sichtbaren Linien mit hochgeladenen Ionen? ...

Share |
thumbnail image: Hochgeladene Taktgeber

Aktuelles Heft

Inhaltsverzeichnis
10 / 2017

thumbnail image: PJ 10 2017

Anomalien von Wasser

Ursprung des Lebens

Fraunhofer-Linien

Phänomenta

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Webinar

Warum reale akustische Systeme nur multiphysikalisch simuliert werden können

  • 02. November 2017

In diesem Webi­nar wird ge­zeigt, warum man bei­spiels­weise schon bei der Simu­la­tion eines „ein­fachen“ Laut­spre­chers auf multi­phy­si­ka­li­sche Kopp­lung an­ge­wie­sen sein kann, wenn man ex­pe­ri­men­tel­le Er­geb­nis­se kor­rekt re­pro­du­zie­ren will.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer