Überblick

Gedeihliche Grenzflächen

Grenzschichten bieten neue Perspektiven für das Design von Supraleitern mit hohen Sprungtemperaturen.

  • Hans Boschker, Dirk Manske und Jochen Mannhart
  • 07 / 2016 Seite: 37

An Grenzflächen lassen sich Elektronensysteme realisieren, die es sonst in der Natur nicht gibt. Ein wichtiges Beispiel sind Schichtsysteme mit zweidimensionalen supraleitenden Grenzflächen, in denen die Cooper-Paare und ihre Paarwechselwirkung in verschiedenen Schichten agieren. Sie besitzen als besonderes Merkmal ultraniedrige Elektronendichten, die sich oft mit einer Gatespannung kontrollieren und optimieren lassen.

Supraleitung ist ein makroskopischer Quantenzustand von erstaunlicher Robustheit. Unterhalb der Sprungtemperatur Tc eines Supraleiters verschwindet dessen Gleichstromwiderstand. Die beweglichen Elektronen kondensieren in einen makroskopischen Wellenzustand, der aus Elektronenpaaren besteht und sich gleich einem gigantischen Molekül­orbital über den gesamten Supraleiter erstreckt. Alle Elektronenpaare dieses Quantenzustandes besitzen in der Regel denselben Schwerpunktimpuls. Das Pauli-Prinzip erlaubt dies nur für Bosonen: Jeweils zwei Elektronen haben sich zu einem Cooper-Paar zusammengeschlossen. Bei der Untersuchung von Supraleitern besteht ein Ziel darin, möglichst hohe Sprungtemperaturen zu erreichen.

Ein vielversprechender Ansatz dafür ist es, supra­leitende Grenzschichten in Heterostrukturen zu verwenden. Es hat sich beispielsweise gezeigt, dass in geschichteten Kristallstrukturen hohe Sprungtemperaturen möglich sind. Zwei prominente Supraleiter mit solchen Kristallstrukturen sind La2–xSrxCuO4 aus der Familie der Hochtemperatur-Kuprate und LaO1–xFxFeAs, ein eisenbasierter Supraleiter aus der Familie der Pniktide (Abb. 1). Beide Supraleiterfamilien besitzen eine natürliche Schichtstruktur, die für die hohe Sprungtemperatur notwendig scheint: In der Kristallstruktur von La2–xSrxCuO4 befindet sich das supraleitende Elektronensystem in den CuO2-Ebenen, im LaO1–xFxFeAs in den FeAs-Ebenen. Die anderen Lagen stabilisieren die Kristallgitter, pumpen Ladungsträger in die supraleitenden Ebenen und koppeln die übereinander liegenden Ebenen miteinander. Die Materialien kris­tallisieren also jeweils in einer block­artigen Struktur, in der den Schichten unterschiedliche Funktionen zukommen. Mindes­tens zwei Lagen müssen zusammenwirken, um Supraleitung zu erzeugen. (...)

Share |
thumbnail image: Gedeihliche Grenzflächen

Aktuelles Heft

Inhaltsverzeichnis
12 / 2017

thumbnail image: PJ 12 2017


Physik der Seifenblasen

Zilien und Geißeln

Nobelpreise

Arbeitsmarkt

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer