Überblick

Magnetkugeln – ein 10-Euro-Labor

Preiswerte Neodym-Magnetkugeln eröffnen einen erfrischend einfachen Zugang, um Vielteilchen-Wechselwirkungen zu illustrieren.

  • Johannes Schönke, Wolfgang Schöpf und Ingo Rehberg
  • 04 / 2016 Seite: 31

Magnetkugeln sind ein inspirierendes physikalisches Spielzeug. Mit ihnen kann man nicht nur chemische, physikalische und mathematische Fragestellungen illustrieren, sondern auch der Kreativität auf die Sprünge helfen. So ist es von der Frage nach dem magnetischen Grundzustand eines mühevoll zusammengesetzten Würfelpuzzles nur ein kleiner Schritt bis zur Erfindung von Magnetkupplungen ohne störende Rastmomente.

Gegen Mittag werden wir an einen schwarzen Berg kommen … das Schiff wird zerschellen und jeder Nagel wird sich am Berge befestigen, denn der erhabene Gott hat dem Magnetgesteine die Kraft verliehen, das Eisen anzuziehen.“ Die Beschreibung des Magnetbergs aus „Tausendundeine Nacht“ belegt, dass die Menschheit schon seit langem von dieser Spielart einer Dipol-Dipol-Wechselwirkung fasziniert ist. Dies steht im Einklang mit der durch Didaktiker vertretenen Ansicht, dass sich der Ferromagnetismus besonders gut für den Sachunterricht in der Grundschule eignet1) – dem möchten wir nicht widersprechen. Die technische Bedeutung des Magnetismus kann man schließlich kaum überschätzen, wenn wir uns verdeutlichen, dass ein großer Teil des kollektiven Gedächtnisses der Menschheit magnetisch gespeichert und abgerufen wird. Die physikalischen Eigenschaften der Vielteilchen-Wechselwirkung von Magneten wurden mit Hilfe der kommerziell massenhaft und preiswert verfügbaren Neodym-Kugeln auch für spielerische Forschungen zugänglich. In diesem Artikel wollen wir einige solcher Experimente und das entsprechende theoretische Modell zusammenfassend vorstellen.

Neodym-Magnet ist die Kurzbezeichnung für eine im Sinterverfahren hergestellte Legierung aus Eisen, Neodym und Bor (Nd2Fe14B), die General Motors und Sumitomo Special Metal 1982 entwickelt haben und die seit etwa zwei Jahrzehnten als günstige Massen­ware erhältlich ist. Als Dauermagnet ist dieses Material stärker als herkömmliche Magnete aus Eisenlegierungen: Die Remanenz von 1 bis 1,5 T ist zwar nicht größer als bei anderen magnetischen Materialien. Aber die Koerzitivfeldstärke von etwa 106 A/m liegt um zwei bis vier Größenordnungen über der von Vergleichsmaterialien, sodass sie durch äußere Magnetfelder ihre Stärke praktisch nicht verlieren können. Die magnetische Wechselwirkung ist deutlich größer als ihr Gewicht: So zerreißt eine meterlange Kette (Abb. 1) nicht unter ihrem Eigengewicht, und selbst ein aufrecht stehender Kugelturm bleibt bis zu einer gewissen Höhe gerade, bevor er sich unter seinem Gewicht verbiegt (Abb. 7)...

Share |
thumbnail image: Magnetkugeln – ein 10-Euro-Labor

Aktuelles Heft

Inhaltsverzeichnis
10 / 2017

thumbnail image: PJ 10 2017

Anomalien von Wasser

Ursprung des Lebens

Fraunhofer-Linien

Phänomenta

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Webinar

Warum reale akustische Systeme nur multiphysikalisch simuliert werden können

  • 02. November 2017

In diesem Webi­nar wird ge­zeigt, warum man bei­spiels­weise schon bei der Simu­la­tion eines „ein­fachen“ Laut­spre­chers auf multi­phy­si­ka­li­sche Kopp­lung an­ge­wie­sen sein kann, wenn man ex­pe­ri­men­tel­le Er­geb­nis­se kor­rekt re­pro­du­zie­ren will.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer