Überblick

Alles im Fluss

Der supraleitende Elektronenbeschleuniger ELBE erzeugt als Sekundärstrahlung auch Infrarot- und THz-Photonen, Positronen, Neutronen und MeV-Röntgenquanten.

  • Manfred Helm, Peter Michel, Michael Gensch und Andreas Wagner
  • 01 / 2016 Seite: 29

Knapp zehn Kilometer vom Flusslauf der Elbe entfernt liegt das Helmholtz-Zentrum Dresden-Rossendorf. Dort befindet sich ELBE – der Elektronen-Linear­beschleuniger für Strahlen mit hoher Brillanz und niedriger Emittanz. Diese Quelle für Sekundärstrahlung, sowohl für elektromagnetische als auch Teilchenstrahlen, ist in den letzten drei Jahren signi­fikant ausgebaut worden und bietet nun neue, verbesserte Experimentiermöglichkeiten.

Um Struktur und Eigenschaften von Materie im weitesten Sinne zu untersuchen, sind geeignete Sonden nötig: Das können elektromagnetische Wellen bzw. Photonen sein, vom niederfrequenten, langwelligen Terahertz-Bereich bis zu kurzwelligen Röntgenquanten, aber auch Teilchen wie Neutronen oder Positronen. Je nach Größe der relevanten Strukturen und Natur der gesuchten Eigen­schaften eignet sich die eine Sonde besser als die andere. Mit den beschleunigten Elektronenpaketen bei ELBE lässt sich eine breite Palette an Sekundärstrahlen erzeugen, um damit z. B. kondensierte Materie zu untersuchen [1] (Abb. 1). Besondere Merkmale von ELBE sind die supraleitenden Beschleuniger­strukturen, die sehr hohe Ströme und damit sehr hohe Teilchenflüsse ermöglichen – unabhängig davon, ob es sich um Photonen, Positronen oder Neutronen handelt. All dies macht den Beschleuniger ELBE weltweit einzigartig und vereint zugleich unterschiedliche Wissenschaftsgebiete mit erheblichen Synergieeffekten.

Mit supraleitenden Hochfrequenzresonatoren lassen sich hohe elektrische Felder von rund 30 MV/m im kontinuierlichen Betrieb erzeugen. Solche Resonatoren, ursprünglich an DESY für das Elektronen-Posi­tronen-Colliderprojekt TESLA entwickelt, kommen an ELBE zum Einsatz. Die Resonanzfrequenz von 1,3 GHz sorgt für eine extrem hohe Güte von über 1010. Ein solcher Resonator arbeitet nahezu verlustfrei und ist in der Lage, ohne nennenswerten Wärmeeintrag in das Resonatormaterial dauerhaft ein hohes Feld zu erzeugen und Elektronenpakete kontinuierlich zu beschleunigen. Diese Betriebsweise heißt „quasi-continuous wave-mode“ (cw). ...

Share |
thumbnail image: Alles im Fluss

Aktuelles Heft

Inhaltsverzeichnis
10 / 2017

thumbnail image: PJ 10 2017

Anomalien von Wasser

Ursprung des Lebens

Fraunhofer-Linien

Phänomenta

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Webinar

Warum reale akustische Systeme nur multiphysikalisch simuliert werden können

  • 02. November 2017

In diesem Webi­nar wird ge­zeigt, warum man bei­spiels­weise schon bei der Simu­la­tion eines „ein­fachen“ Laut­spre­chers auf multi­phy­si­ka­li­sche Kopp­lung an­ge­wie­sen sein kann, wenn man ex­pe­ri­men­tel­le Er­geb­nis­se kor­rekt re­pro­du­zie­ren will.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer