Überblick

Physik der Intermediärfilamente

Biophysikalische Prozesse bestimmen wesentlich das Verhalten von Proteinen in der Zelle.

  • Sarah Köster
  • 10 / 2015 Seite: 39

Lange Zeit galten Intermediärfilamente lediglich als statische Strukturproteine in der Zelle. Inzwischen häufen sich jedoch die Hinweise, dass sie durchaus dynamisch hierarchische Strukturen bilden, als „Fracht“ mit molekularen Motoren wechselwirken und die mechanischen Eigenschaften von Zellen stark beeinflussen. So können Mutationen dieser Proteine die Ursache schwerer Krankheiten sein. Das Interesse von Biophysikern an der Erforschung von Intermediärfilamenten ist daher in den letzten Jahren stark gestiegen.

Kleine Mutationen im Erbgut können schwerste Erkrankungen auslösen. Die amyotrophe Lateral­sklerose (ALS), die Alexander-Krankheit, bei der die weiße Substanz von Gehirn und Rückenmark zunehmend abgebaut wird, die Progerie (eine Erkrankung, die zu vorzeitigem Altern führt) und zahlreiche Hautkrankheiten rühren alle von Mutationen in derselben Klasse von intrazellulären Proteinen her, den Intermediärfilamenten (IF) [1]. Noch ist man weit davon entfernt, die zugrunde liegenden Mechanismen hinter all diesen Krankheiten zu verstehen. Jedoch ist es ein wichtiges Ziel der medizinischen Forschung, einzelne Intermediärfilamente sowie deren Strukturen in der Zelle genau zu unter­suchen. Während der Fokus dabei zunächst auf den biologischen und biochemischen Zusammenhängen lag, wurde in den letzten Jahren zunehmend klar, dass auch biophysikalische Prozesse das Verhalten dieser Proteine und der hierarchischen Strukturen, die sie bilden, definieren [2, 3].

Intermediärfilamente bilden zusammen mit Aktinfilamenten und Mikrotubuli, ergänzt durch zahlreiche Bindeproteine, welche die Filamente verlinken und bündeln, sowie Motorproteine, die sich entlang der Filamente bewegen und dadurch Kräfte erzeugen, das Skelett der Zelle (Abb. 1). Dieses Zytoskelett bestimmt unter anderem die mechanischen Eigenschaften von Zellen und Gewebe, beispielsweise die Reißfestigkeit der Haut, die Elastizität von roten Blutkörperchen oder die Krafterzeugung in Muskelzellen. Das Zytoskelett ist eine Art „Verbundmaterial“, das durch die Kombination dreier verschiedener Filamenttypen völlig neue Eigenschaften hervorbringt [4]...

Share |
thumbnail image: Physik der Intermediärfilamente

Aktuelles Heft

Inhaltsverzeichnis
10 / 2017

thumbnail image: PJ 10 2017

Anomalien von Wasser

Ursprung des Lebens

Fraunhofer-Linien

Phänomenta

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Webinar

Warum reale akustische Systeme nur multiphysikalisch simuliert werden können

  • 02. November 2017

In diesem Webi­nar wird ge­zeigt, warum man bei­spiels­weise schon bei der Simu­la­tion eines „ein­fachen“ Laut­spre­chers auf multi­phy­si­ka­li­sche Kopp­lung an­ge­wie­sen sein kann, wenn man ex­pe­ri­men­tel­le Er­geb­nis­se kor­rekt re­pro­du­zie­ren will.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer