Schwerpunkt

Linsen im Kosmos

Die gravitative Lichtablenkung ist zu einem unverzichtbaren Werkzeug der Kosmologie geworden.

  • Peter Schneider
  • 06 / 2015 Seite: 45

Lichtstrahlen folgen den Nullgeodäten der Metrik und werden daher im Schwerefeld abgelenkt. Dieser Effekt besitzt wichtige astrophysikalische Anwendungen: Wenn das Licht einer entfernten Quelle durch eine Massenkonzentration („Gravitationslinse“) zwischen uns und der Quelle abgelenkt wird, lässt sich daraus viel lernen – sowohl über die Massenverteilung der Linse als auch über die Eigenschaften der Quelle und die des Raums dazwischen. Der Gravitationslinsen­effekt ist inzwischen als zentrales Werkzeug der Astrophysik und Kosmologie etabliert.

Die Messung der Lichtablenkung im Gravitationsfeld der Sonne während einer Sonnenfinsternis 1919 bestätigte eine der zentralen Vorhersagen der Allgemeinen Relativitätstheorie. Das verhalf ihr zur breiten Anerkennung in der Fachwelt und weit darüber hinaus. Schon bald darauf wurde über weitere spektakuläre Effekte der gravitativen Lichtablenkung spekuliert: Falls sich eine genügend massereiche und kompakte Massenverteilung zwischen einer entfernten Quelle und uns befindet, kann es mehrere Lichtstrahlen geben, die uns mit der Quelle verbinden − und damit wäre die Quelle an mehreren Positionen der Sphäre zu sehen (Abb. 1). Die ersten Mehrfachbilder eines Quasars wurden 1979 entdeckt; inzwischen ist die Zahl solcher starken Gravitationslinsensysteme auf mehrere hundert angewachsen, wobei als Quellen aktive und normale Galaxien auftreten und Galaxien oder Gala­xienhaufen als Linse wirken [1].

Da Lichtbündel nicht nur als Ganzes, sondern auch differentiell abgelenkt werden, sind die beobachteten Bilder im Vergleich zum Bild der unabgelenkten Quelle verzerrt. Dies hat zwei Effekte zur Folge: Erstens ändert sich die Querschnittsfläche (bzw. der beobachtete Raumwinkel) der Lichtbündel. Da die Flächenhelligkeit aufgrund des Liouville-Theorems erhalten bleibt, ändert sich der beobachtete Fluss eines Bildes um diese Flächenverzerrung. Zweitens verändert sich die Form der Bilder. Beide Effekte können dramatische Konsequenzen haben, etwa leuchtende Bögen in Galaxienhaufen (Abb. 2). Der Fluss dieser Bögen kann den der „ungelinsten“ Quelle um einen Faktor 20 oder mehr übersteigen. Wie schon Fritz Zwicky 1937 vorhersagte, erlaubt uns der Linseneffekt daher einen besseren Blick auf leuchtschwache, sehr weit entfernte Quellen. In den meisten Fällen ist die Bildverzerrung wesentlich unspektakulärer als bei den leuchtenden Bögen und lässt sich in individuellen Bildern nicht identifizieren; wir sprechen dann vom „schwachen Gravitationslinsen­effekt“. Da jedoch in unserem Universum die Dichte von schwachen und weit entfernten Galaxien an der Sphäre sehr groß ist, ist es möglich, diese Verzerrungen statistisch nachzuweisen und quantitativ zu untersuchen...

Share |
thumbnail image: Linsen im Kosmos

Aktuelles Heft

Inhaltsverzeichnis
12 / 2017

thumbnail image: PJ 12 2017


Physik der Seifenblasen

Zilien und Geißeln

Nobelpreise

Arbeitsmarkt

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer