Überblick

Kompromissbereite Supraleitung

Starke Evidenzen sprechen dafür, dass die vor über 50 Jahren vorhergesagte FFLO-Supraleitung in starken Magnetfeldern tatsächlich auftritt.

  • Gertrud Zwicknagl und Jochen Wosnitza
  • 03 / 2015 Seite: 31

Hohe Magnetfelder und Supraleitung vertragen sich üblicherweise nicht: Das Magnetfeld favorisiert parallel ausgerichtete Elektronenspins, während die Supraleitung Cooper-Paare mit antiparallelen Spins voraussetzt. Daher sollte bei ausreichend großen Feldern die Supraleitung zusammenbrechen. Wie Fulde und Ferrell sowie Larkin und Ovchinnikov bereits 1964 vorhergesagt haben, können räumlich getrennte supraleitende sowie magnetisch geordnete Bereiche aber auch bei noch höheren Magnetfeldern koexistieren.

In sehr vielen Metallen tritt bei tiefen Temperaturen das Phänomen der Supraleitung auf. Dabei fließt ein elektrischer Strom verlustfrei, wie Heike Kamer­lingh Onnes 1911 an Quecksilber entdeckte. Erst 1957 gelang es jedoch John Bardeen, Leon Cooper und Robert Schrieffer, das Auftreten von Supraleitung mikroskopisch zu erklären. Im Rahmen der nach ihnen benannten BCS-Theorie führt eine beliebig kleine attraktive Wechselwirkung zwischen zwei Elektronen im Festkörper zur Bildung von Cooper-Paaren. Dabei wird die Gesamtenergie des elektronischen Systems im Festkörper abgesenkt, und Anregungen sind nur über eine Energielücke hinweg möglich. Die Größe dieser Energielücke bzw. auch die Dichte der Cooper-Paare sind ein Maß für die Stabilität des supraleitenden Zustands.

Magnetfelder unterdrücken die Supraleitung. Diese Beobachtung erwähnte Kamerlingh Onnes bereits 1913 auf dem „Third International Congress on Refrigera­tion“ in Chicago. Die prinzipielle Unverträglichkeit von Supraleitung und Magnetismus begrenzt bis heute die Anwendung von Supraleitung, um z. B. hohe Magnetfelder zu erzeugen. Allerdings sind inzwischen kritische Felder von weit über 100 Tesla möglich – eine enorme Steigerung gegenüber dem von Kamerlingh Onnes berichteten Wert von 0,05 Tesla. Diese hohen kritischen Felder treten in Materialien auf, in denen Supraleitung und Magnetismus einen Kompromiss eingehen und so in einem gewissen Bereich von Temperatur und Magnetfeld koexistieren. Charakteristisch für diese Kompromisszustände ist, dass die Supraleitung, genauer die Cooper-Paar-Dichte, inhomogen ist und in gewissen Bereichen auch verschwinden kann. Grob gesagt wird ein Teil des supraleitenden Volumens geopfert, um den supraleitenden Zustand zu erhalten. Ein typisches Beispiel dafür ist die Shubnikov-Phase, die sich in Typ-II-Supraleitern oberhalb eines unteren kritischen Feldes ausbildet. Charakteristisch für diese Phase sind periodisch angeordnete Flussschläuche mit normal leitenden Kernen, in die das Magnetfeld eindringt. Dabei entsteht ein Flussliniengitter, dessen Gitterkonstante von der Temperatur und vom Magnetfeld abhängt und das Experimente eindrucksvoll nachgewiesen haben.

Share |
thumbnail image: Kompromissbereite Supraleitung

Aktuelles Heft

Inhaltsverzeichnis
11 / 2017

thumbnail image: PJ 11 2017

Interview mit Alexander Gerst

Atomare Cluster im Fokus

Elektrische Dipolmomente gesucht

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Webinar

Warum reale akustische Systeme nur multiphysikalisch simuliert werden können

  • 02. November 2017

In diesem Webi­nar wird ge­zeigt, warum man bei­spiels­weise schon bei der Simu­la­tion eines „ein­fachen“ Laut­spre­chers auf multi­phy­si­ka­li­sche Kopp­lung an­ge­wie­sen sein kann, wenn man ex­pe­ri­men­tel­le Er­geb­nis­se kor­rekt re­pro­du­zie­ren will.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer