Überblick

Herausforderung Wärmespeicher

Thermische Speicher sind die Mauerblümchen der Energieforschung, in ihnen stecken aber viele offene physikalische Fragen.

  • André Thess, Franz Trieb, Antje Wörner und Stefan Zunft
  • 02 / 2015 Seite: 33

Thermische Energiespeicher – im Volksmund „Wärmespeicher“ – erwecken bei den meisten Menschen die Vorstellung von Nachtspeicheröfen, Thermosflaschen, Handwärmern oder Omas Bügeleisen mit feuerbeheiztem Eisenkern. Keines dieser Beispiele spiegelt allerdings die aktuelle Forschung angemessen wider, denn hinsichtlich physikalischer Komplexität und praktischer Bedeutung stehen Wärmespeicher den uns allgegenwärtigen Batterien keineswegs nach.

Ein Wärmespeicher im engeren Sinne des Wortes ist ein geschlossenes thermodynamisches System, dessen Gleichgewichtszustand X = (U1 … UN, V1 … VM) nur durch Ändern der Energiekoordinaten Ui, jedoch nicht durch Ändern der Arbeitskoordinaten Vi verändert wird [1]. Nach dieser zugegebenermaßen abstrakten Definition besteht der einfachste Wärmespeicher aus einem System mit konstantem Volumen V (Arbeitskoordinate), dessen einzige relevante Zustandsfunktion die Innere Energie U (Energiekoordinate) als Funktion der Temperatur oder der Entropie ist. Im Gegensatz dazu verkörpert ein adiabatisch komprimiertes Gasvolumen keinen Wärmespeicher im Sinne dieser Definition, weil seine innere Energie U durch Manipulation an der Arbeitskoordinate V erhöht worden ist. Im weiteren Sinne des Wortes gehören zu einem Wärmespeicher auch z. B. elektrische Heizwendel beim Nachtspeicherofen („Beladeeinrichtungen“) oder ein Dampfkraftprozess bei einem Solarkraftwerk („Entladeeinrichtungen“). Charakterisieren lässt sich ein Wärmespeicher über die Speichertemperatur TH, die Energiespeicherdichte q in Wh/kg, den Speicherwirkungsgrad in Prozent, die maximale Zyklenzahl und die spezifischen Investitionskosten in Euro/Wh.

Der Vergleich mit anderen Speichertechnologien wie Batterien, Supercaps oder Schwungrädern zeigt schnell, dass sich Wärmespeicher nicht durch eine besonders hohe Energiespeicherdichte auszeichnen. Ihre drei wichtigsten Vorzüge sind vielmehr ihr niedriger Preis sowie die Tatsachen, dass sie ihre Eigenschaften auch über viele Zyklen behalten (hohe Zyklenfestigkeit) und dass Wärmespeichermaterialien (Infokasten) im Unterschied zu Lithium, Platin oder Kupfer nicht importiert werden müssen und in großen Mengen zur Verfügung stehen (Ressourcengenügsamkeit). Diese Vorteile gelten gleichermaßen für die drei nachfolgend beschriebenen Typen von Wärmespeichern und geben den Ausschlag für ihr großes Anwendungspotenzial. ...

Share |
thumbnail image: Herausforderung Wärmespeicher

Aktuelles Heft

Inhaltsverzeichnis
10 / 2017

thumbnail image: PJ 10 2017

Anomalien von Wasser

Ursprung des Lebens

Fraunhofer-Linien

Phänomenta

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Webinar

Warum reale akustische Systeme nur multiphysikalisch simuliert werden können

  • 02. November 2017

In diesem Webi­nar wird ge­zeigt, warum man bei­spiels­weise schon bei der Simu­la­tion eines „ein­fachen“ Laut­spre­chers auf multi­phy­si­ka­li­sche Kopp­lung an­ge­wie­sen sein kann, wenn man ex­pe­ri­men­tel­le Er­geb­nis­se kor­rekt re­pro­du­zie­ren will.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer