Überblick

Das Geheimnis der Dunklen Materie

Die Jagd nach Teilchen der Dunklen Materie kommt in ihre bisher spannendste Phase.

  • Rafael Lang
  • 11 / 2014 Seite: 35

Zahlreiche kosmologische und astrophysikalische Beobachtungen legen die Existenz großer Mengen an Dunkler Materie nahe. Allerdings ist deren Natur noch gänzlich unbekannt. Völlig unterschiedliche Experimente versuchen, den Teilchen der Dunklen Materie auf die Schliche zu kommen. Einige von ihnen werden in den kommenden Monaten oder Jahren die vielversprechendsten Teilchenmodelle überprüfen.

Zahlreiche kosmologische und astrophysikalische Beobachtungen legen die Existenz großer Mengen an Dunkler Materie nahe. Allerdings ist deren Natur noch gänzlich unbekannt. Völlig unterschiedliche Experimente versuchen, den Teilchen der Dunklen Materie auf die Schliche zu kommen. Einige von ihnen werden in den kommenden Monaten oder Jahren die vielversprechendsten Teilchenmodelle überprüfen. Beim Blick an das nächtliche Firmament drängt sich die Frage auf: Welche Geheimnisse birgt das Universum? Dass es nicht nur leuchtende, sondern auch dunkle Materie beinhaltet, ist in der Astronomie schon lange klar. Jacobus Kapteyn verwendete bereits 1922 den Begriff der Dunklen Materie und bezeichnete damit Masse, deren Existenz lediglich aus Beobachtungen der Kinematik von Himmelskörpern abgeleitet wird. Heute bezeichnet der Begriff im engeren Sinne nichtbaryonische Materie, also solche, die nicht aus Quarks aufgebaut ist. Da sie nicht an der elektromagnetischen Wechselwirkung teilnimmt, sollte sie besser transparente Materie heißen, aber der eingebürgerte Name ist für diese Spitzfindigkeit wohl zu populär.

Verschiedene kosmologische Beobachtungen deuten auf Unmengen Dunkler Materie hin. In der primordialen Nukleosynthese – zwischen 3 und 15 Minuten nach dem Urknall – fanden sich in guter Näherung alle Neutronen mit Protonen zu stabilen 4He-Kernen zusammen. Die restlichen Protonen bildeten den Wasserstoff, der das sichtbare Universum beherrscht. Andere Elemente waren stark unterdrückt, bieten aber eine empfindliche Methode, um die baryonische Dichte des Universums Ωb zum Zeitpunkt der Nukleo­synthese zu bestimmen. War zum Beispiel die Dichte des Universums niedriger, so verpassten mehr vereinzelte Deuterium-Kerne die Fusion zum stabilen 4He und blieben übrig. Aus Messungen dieses primordialen Deuteriums lässt sich daher berechnen, dass die Baryonen zur durchschnittlichen Gesamtdichte unseres Universums von 8 × 10–27 kg/m3 (das entspricht etwa fünf Wasserstoff-Atomen pro Kubikmeter) nur Ωb = (5,0 ± 0,4)% beitragen. Schon wenige Minuten nach dem Urknall zeigt sich demnach, dass nur wenige Prozent des Universums aus bekannter Materie bestehen.

380 000 Jahre später hatte sich das Universum so weit abgekühlt, dass sich Elektronen und Kerne zu neutralen Atomen verbinden konnten, ohne gleich wieder ionisiert zu werden. Damit wurde das Universum für Photonen transparent. Die zu diesem Zeitpunkt ausgesandten Photonen sehen wir heute, stark gekühlt in den Mikrowellenbereich verschoben, als kosmische Hintergrundstrahlung. Sie ist in exzellenter Näherung isotrop und homogen, aber Präzisionsbeobachtungen machen winzige Temperaturschwankungen in der Größenordnung von nur 10–5 sichtbar. Diese haben ihren Ursprung in Dichteschwankungen im frühen Universum: Je nach Stärke des Gravitationspotentials haben die Photonen der Hintergrundstrahlung etwas mehr oder weniger Energie, also eine etwas höhere oder niedrigere Temperatur (Sachs-Wolfe-Effekt). Um diese Dichteschwankungen quantitativ zu analysieren, wird aus der Himmelskarte ein Leistungsspektrum berechnet. Hierzu wird die Karte in eine Reihe aus Kugelflächenfunktionen entwickelt, aus deren Koeffizienten sich das Leistungsspektrum ableitet. Die dort gezeigten Schwankungen entsprechen den akustischen Schwingungen: Während die Schwerkraft Materie jeder Art zusammenklumpt, erfährt baryonische Materie eine entgegengesetzte Kraft aus dem Strahlungsdruck der Photonen. Wie immer, wenn sich zwei Kräfte gegen­überstehen, resultiert eine Schwingung mit einer charakteristischen Frequenz. Insbesondere aus der unterschiedlichen Höhe des ersten und dritten Peaks im Leistungsspektrum lässt sich die baryonische Dichte des Universums zu Ωb = (4,9 ± 0,1)% berechnen. Um jedoch die Stärke der Peaks zu erklären, benötigt dieser Datensatz zusätzliche Materie, die zwar gravitativ klumpt, aber nicht mit dem Photonenbad wechselwirkt. Die Dichte dieser Dunklen Materie beträgt ΩDM = (26,6 ± 0,7)% – rund fünfmal mehr als die bekannte baryonische Materie. Die restlichen ΩΛ = (68,6 ± 2,0)% werden der Dunklen Energie zugeschrieben. ...

Share |
thumbnail image: Das Geheimnis der Dunklen Materie

Aktuelles Heft

Inhaltsverzeichnis
12 / 2017

thumbnail image: PJ 12 2017


Physik der Seifenblasen

Zilien und Geißeln

Nobelpreise

Arbeitsmarkt

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer