Überblick

Ein Ring, die Erde zu finden

Hochauflösende Ringlaser ermöglichen die Inertialnavigation für den Erdkörper.

  • Ulrich Schreiber
  • 05 / 2013 Seite: 25

Unser Alltag hängt, oft ohne dass wir es merken, immer mehr von satellitengestützten Navigationssystemen ab. Damit diese funktionieren, müssen die Orientierung der Erde im Raum und ihre Rotations­geschwindigkeit, die beide variieren, so genau wie möglich bekannt sein. Traditionell liefert ein globales Netz von Radio­teleskopen diese Information. Doch höchst präzise Ringlaser, deren Prinzip auf ein Experiment von Georges Sagnac aus dem Jahr 1913 zurückgeht, können diese Größen auch in einem Labor­experiment bestimmen und haben das Potenzial, die Messungen von Radio­teleskopen bedeutend zu verbessern.

Auch wenn unsere Alltagserfahrung dagegen spricht, ist die Erde kein starrer Körper. Über große Zeiträume hinweg betrachtet hat sie sich ganz erstaunlich verändert. Kontinente haben sich über große Distanzen verschoben. Die Ausrichtung und Feldstärke des Erdmagnetfelds wandert, wobei mehrfach Polaritätswechsel stattgefunden haben. Daher verwundert es auch nicht, dass beispielsweise auf Spitzbergen fossile Pflanzenreste einer subtropischen Vegetation gefunden wurden. Doch auch jenseits dieser Vorgänge gibt es Hinweise auf einen dynamischen, deformierbaren Erdkörper. Dass der Mond für die Gezeiten der Meere verantwortlich ist, überrascht niemanden mehr, dass er aber auch in gleichem Maße Gezeiten der festen Erde mit einer Amplitude von rund zwanzig Zentimetern bei uns in Mitteleuropa verursacht, ist weniger allgemein bekannt und entspricht obendrein auch nicht unserer Alltagserfahrung. Die durch die gravitative Deformation verursachte Hebung bzw. Senkung der Erdkruste findet periodisch über einen Zeitraum von etwas mehr als zwölf Stunden statt, und das wellenförmige Signal mit einer Amplitude von 20 cm, einer Frequenz von 22,4 mHz und einer Wellenlänge von ca. 20 000 km entzieht sich unserer direkten Wahrnehmung. Mit Gravimetern und hochgenauen Neigungsmessern lässt sich aber nicht nur die Höhenänderung, sondern auch der Neigungswinkel der lokalen Erdkruste infolge der Deformation der Erde bestimmen.

Um herauszufinden, ob so kleine Effekte für unsere typischen Alltagssituationen vielleicht doch konkrete Auswirkungen haben können, müssen wir genauer hinschauen. Die Erde besteht in einer einfachen Einteilung aus einem festen inneren Kern, einem flüssigen äußeren Kern, einem Mantel, einer dünnen Kruste, den Ozeanen und nicht zuletzt der Atmosphäre. In dieser Aufzählung dürfen auch die großen kontinentalen Eisschilde aufgrund ihrer Variabilität nicht fehlen. Jede dieser Komponenten trägt einen Teil der Gesamtmasse der Erde und nimmt an einem fortwährenden Massenumverteilungsprozess bzw. einem Impulsaustausch teil. Die Folge dieser gegenseitigen Wechselwirkungen im Gravitationsfeld von Sonne, Mond und anderen prominenten Massen des Sonnensystems sind geringfügige Änderungen des effektiven Trägheitsmoments der Erde. Damit gehen leichte Schwankungen in der täglichen Rotationsgeschwindigkeit sowie der Lage des Erdkörpers im Raum einher. Als ein Effekt von mehreren führt allein die Verlangsamung der Rotationsgeschwindigkeit der Erde aufgrund der Gezeitenreibung dazu, dass ein Tag innerhalb von hundert Jahren um rund 2 ms länger wird. Auf den ersten Blick erscheint es vernachlässigbar wenig, wenn ein Tag mit 86 400 Sekunden nach hundert Jahren um 2/1000 Sekunden länger ist. Man muss sich jedoch vor Augen halten, dass sich diese kleine Abweichung mit jedem weiteren Tag erneut aufsummiert. Bei 36 525 Tagen in einem Jahrhundert kommt da schon einiges an Abweichungen zusammen. Die gelegentliche Einführung von Schaltsekunden in unserer bürgerlichen Zeit erinnert uns immer wieder daran. Zu diesem gut überschaubaren Effekt der Gezeitenreibung kommen die nicht vorhersagbaren Effekte aus den angesprochenen Massenumlagerungen sowie dem Impulsaustausch zwischen den einzelnen Subsystemen der Erde. Damit ändert sich die Tageslänge noch erheblich mehr. Doch warum ist dies für jeden von uns so wichtig? ...

Share |
thumbnail image: Ein Ring, die Erde zu finden

Aktuelles Heft

Inhaltsverzeichnis
11 / 2017

thumbnail image: PJ 11 2017

Interview mit Alexander Gerst

Atomare Cluster im Fokus

Elektrische Dipolmomente gesucht

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer