Überblick

Maßgeschneiderte Spinwellen

Strukturierte Nanomagnete, in denen Spinwellen propagieren, versprechen vielfältige Anwendungen

  • Sergej O. Demokritov und Dirk Grundler
  • 03 / 2013 Seite: 37

Die Wellenlänge von Gigahertz-Strahlung, wie sie in WLAN-Netzen oder Mobiltelefonen verwendet wird, beträgt typischerweise einige Zentimeter. Dass sich diese Strahlung dennoch in handlichen Geräten ver­arbeiten lässt, verdanken wir der Ankopplung an elementare Festkörper-Anregungen, deren Wellenlänge nur Mikrometer beträgt. Kollektive Spinanregungen in magnetischen Materialien versprechen eine weitere Miniaturisierung bis hinunter auf die Nanoskala und könnten es sogar ermöglichen, die Arbeitsfrequenzen variabel einzustellen.

In unserem Alltag hat die Bedeutung von Mikrowellen rasant zugenommen. Im Mikrowellenofen erwärmen wir Nahrungsmittel mit Hilfe elektro­magnetischer Strahlung der Frequenz 2,455 GHz bzw. Wellenlänge 12 cm. Auf ähnlichen Wellenlängen senden und empfangen sowohl WLAN-Netzwerke als auch Mobiltelefone. In Radargeräten haben diskrete Bauelemente wie Phasenschieber und Zirkulatoren, die Mikrowellen direkt verarbeiten, Baulängen in der Größenordnung der Wellenlänge λ und können ein ­Kilogramm und mehr wiegen. Diese Eigenschaften sind offenkundig nicht geeignet für mobile Geräte in der Informationstechnologie. Die moderne Mikro­wellentechnik zeichnet sich daher auch dadurch aus, die langwellige GHz-Strahlung in Endgeräten auf wenige Mikrometer „schrumpfen“ zu können. Dies gelingt durch Ankopplung an elementare Anregungen in Festkörpern. In Mobiltelefonen werden die elektrischen GHz-Signale mithilfe von z. B. piezoelektrischen Materialien in kurzwellige mechanische Oberflächenwellen (akus­tische Phononen) gewandelt und in miniaturisierten Bauelementen weiterverarbeitet. Eine Alternative könnten kollektive Spinanregungen in magnetischen Materialien bilden. Diese Anregungen breiten sich in Ferromagneten als Spinwellen oder – im Teilchenbild – als Magnonen aus und bieten technologische Vorteile: Die Arbeitsfrequenzen lassen sich mit Magnetfeldern nachträglich einstellen, und nichtflüchtige magnetische Zustände erlauben sowohl Speicherfunktionen als auch logische Operationen. Existierende Bauelemente ließen sich damit umprogrammieren. Dadurch wäre es prinzipiell möglich, die Trägerfrequenzen in WLAN- und Mobilfunk-Netzwerken flexibel zu ändern. Spinwellen erlauben zudem eine weitere Miniaturisierung bis hin­unter auf die Nanoskala.

In einer Spinwelle koppelt die elektromagnetische Welle über das magnetische Wechselfeld mit der Magnetisierung des Ferromagneten (Infokasten). Diese Kopplung findet im GHz-Frequenzbereich statt und reduziert die charakteristische Wellenlänge um mehrere Größenordnungen. Zudem besitzt eine Spinwelle eine nichtlineare Dispersionsrelation, die zu einzigartigen Eigenschaften führt: Im Unterschied zu Photonen oder Plasmonen lassen sich die gesamte ­Dispersionsrelation von Magnonen mit einem Magnetfeld verschieben und die untere Abschneide­frequenz f0 der Spinwellen sehr einfach zwischen 0,1 und 100 GHz einstellen. Bei einer konstanten Frequenz ist es somit möglich, die Wellenlänge stark zu variieren, im gezeigten Beispiel von Millimeter bis unter 100 Nanometer. Im selben GHz-Frequenzbereich würde die Wellenlänge der freien elektromagnetischen Welle von Meter bis Millimeter differieren. Darüber hinaus wird bei der Signalübertragung mit Magnonen im Unterschied zur konventionellen Elektronik oder Spintronik keine Ladung transportiert, was für verlustarme Anwendungen interessant ist. ...

Share |
thumbnail image: Maßgeschneiderte Spinwellen

Aktuelles Heft

Inhaltsverzeichnis
10 / 2017

thumbnail image: PJ 10 2017

Anomalien von Wasser

Ursprung des Lebens

Fraunhofer-Linien

Phänomenta

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer