Überblick

Kletternde Tropfen

Auf einer geschüttelten Flüssigkeit können sich Tropfen horizontal bewegen und auf einer geschüttelten festen Oberfläche sogar eine fast senkrechte Steigung „hinauf klettern“.

  • Karin John und Uwe Thiele
  • 02 / 2013 Seite: 33

In geschüttelten Flüssigkeiten mit freien Oberflächen treten interessante Effekte auf, zum Beispiel dynamische Oberflächenmuster und gerichteter Transport. Tropfen können auf der Oberfläche einer geschüttelten Flüssigkeit hüpfend mit selbst erzeugten Oberflächenwellen wechselwirken und sich dadurch gerichtet bewegen, oder sie klettern eine geschüttelte geneigte feste Oberfläche hinauf. Dieser gerichtete Tropfentransport lässt sich im letzteren Fall durch ein Minimalmodell verstehen, das einer hydrodynamischen Realisierung des Ratschenprinzips entspricht.

Bereits im 19. Jahrhundert haben Faraday, Kelvin und Rayleigh den Einfluss von Vibrationen auf Flüssigkeiten untersucht. In der Tradition von Chladni, Oersted und Savart, die Klangfiguren von Pulvern auf festen Oberflächen beschrieben hatten, versetzte Faraday 1831 Flüssigkeitsschichten vertikal in Vibration und beobachtete, wie auf der freien Oberfläche dynamische Strukturen entstanden. Etliche Jahre später berechneten Rayleigh und Kelvin die Eigenschwingungen freier sphärischer Tropfen idealer Flüssigkeiten.

Für eines seiner Experimente beschichtete Faraday die Unter­seite einer waagerechten Platte mit Wasser, Öl oder Eiweiß und brachte die Platte durch einen am Rand angesetzen Geigenbogen zum Schwingen. Tropfen, die sich unter dem Einfluss der Schwerkraft an verschiedenen Stellen geformt hatten, wurden geglättet. Gleichzeitig entstanden an den Stellen der stärksten Vibrationen flache Erhebungen im Film. Als Fara­day zentimeterdicke Wasserschichten auf einem hori­zontalen Substrat homogen vertikal schüttelte, ordneten sich nichtlineare stehende Wellen regelmäßig an – die Faraday-Wellen. Die zeitliche Modulation der Beschleunigung bewirkt eine Grenzflächeninstabilität, die als Faraday-Instabilität bekannt ist und als Musterbeispiel für eine parametrische Resonanz gilt.

Bis heute ist die Frage, wie Flüssigkeiten mit freien Oberflächen auf Vibrationen reagieren, von wissenschaftlichem Interesse. Zum Beispiel ermöglichen es Varianten des Faraday-Experiments zu untersuchen, wie sich dynamische Muster in getriebenen Systemen herausbilden und entwickeln. Neben den klassischen Quadratmustern, die schon Faraday kannte, lassen sich inzwischen Supergitter- und quasi­kristalline Muster experimentell erzeugen. Dazu ist es erforderlich, mehrere Vibrationsfrequenzen gleichzeitig zu verwenden und die Amplituden genau einzustellen. Auch kleine Behälter zeigen interessante raumzeitliche Muster. Diese Effekte sind mit Werkzeugen der nichtlinearen Dynamik zu erklären. ...

Share |
thumbnail image: Kletternde Tropfen

Aktuelles Heft

Inhaltsverzeichnis
10 / 2017

thumbnail image: PJ 10 2017

Anomalien von Wasser

Ursprung des Lebens

Fraunhofer-Linien

Phänomenta

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Webinar

Warum reale akustische Systeme nur multiphysikalisch simuliert werden können

  • 02. November 2017

In diesem Webi­nar wird ge­zeigt, warum man bei­spiels­weise schon bei der Simu­la­tion eines „ein­fachen“ Laut­spre­chers auf multi­phy­si­ka­li­sche Kopp­lung an­ge­wie­sen sein kann, wenn man ex­pe­ri­men­tel­le Er­geb­nis­se kor­rekt re­pro­du­zie­ren will.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer