Überblick

Auf den Kontext kommt es an

Was hat die Frage „Können wir alles wissen?“ mit der Quantenmechanik zu tun?

  • Otfried Gühne und Matthias Kleinmann
  • 02 / 2013 Seite: 25

Die Quantenmechanik hat viele, scheinbar paradoxe Konsequenzen. Diese Tatsache hat zu Spekulationen darüber verleitet, ob es eine übergeordnete Theorie geben könnte, die im Einklang mit der klassischen Physik ist. Neben der Bellschen Ungleichung gibt es ein weitreichendes Theo­rem von Ernst Specker und Simon Kochen, das es ermöglicht, „klassische Modelle“ quantenmechanischer Systeme auszuschließen. Was als Nachdenken über die logische Struktur der Quantenmechanik begann, lässt sich nun auch im Experiment beobachten.

Schon bei der Formulierung der Quantenmechanik in den 1920er-Jahren war den daran beteiligten Physikern bewusst, dass sich die neue Theorie von der klassischen Physik fundamental unterscheidet. Die Interferenz von Teilchen am Doppelspalt oder die Unschärferelationen galten als typische Quanteneffekte. Albert Einstein, Boris Podolsky und Nathan Rosen bemerkten 1935, dass bei räumlich getrennten Quantensystemen neuartige und überraschende Effekte auftauchen. In ihrem berühmten EPR-Paradoxon betrachteten sie zwei separierte Teilchen, die sich jedoch durch eine gemeinsame Wellenfunktion beschreiben lassen. Sie zeigten, dass man unter Umständen dem Ort und Impuls eines Teilchens einen Wert zuweisen kann, was der Quantenmechanik zu widersprechen scheint. Dies warf die Frage auf, ob die Quantenmechanik vollständig ist oder − so die Idee von Einstein, Podolsky und Rosen − eine komplexere determinis­tische Theorie mit weiteren Parametern sie ablösen könnte. Der Indeterminismus der Quantenmechanik würde sich dann aus unserem Unwissen über die zusätzlichen „verborgenen“ Parameter erklären.

John Bell konnte 1964 mit seiner bekannten Ungleichung zeigen, dass Modelle mit verborgenen Parametern nicht mit den Vorhersagen der Quantenmechanik verträglich sind. Hierbei machte er im Wesentlichen zwei Annahmen über klassische Modelle:
Realismus: Der Wert einer messbaren Größe exis­tiert unabhängig davon, ob die Messung tatsächlich stattfindet oder nicht.
Lokalität: Die Messresultate an einem Teilchen hängen nicht von der Wahl der Messung an einem anderen, weit entfernten Teilchen ab.

Die Bellsche Ungleichung liefert ein klares, experimentell testbares Kriterium, um zwischen Quanten­mechanik und klassischer Physik zu unterscheiden. Zahlreiche Experimente an verschränkten Teilchen haben in den letzten Jahren die Vorhersagen der Quanten­mechanik bestätigt. Demnach ist zumindest eine der Annahmen von Realismus oder Lokalität nicht erfüllt. ...

Share |
thumbnail image: Auf den Kontext kommt es an

Aktuelles Heft

Inhaltsverzeichnis
12 / 2017

thumbnail image: PJ 12 2017


Physik der Seifenblasen

Zilien und Geißeln

Nobelpreise

Arbeitsmarkt

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier:
2017 deutsch / eng­lisch
2018 deutsch / englisch

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer