Preisträger

Rechnen mit Quanten

In den letzten Jahren ist es gelungen, eine Reihe von Quantenzuständen und einfachen Quantenalgorithmen zu realisieren.

  • Rainer Blatt
  • 09 / 2012 Seite: 35

In nicht allzu ferner Zukunft werden konventionelle Computer zwangsläufig an ihre Grenzen stoßen. Einen Ausweg könnten Quantencomputer bieten, die sich Superposition und Verschränkung zunutze machen. Quantencomputer mit einigen wenigen gespeicherten Ionen als elementaren Bausteinen liefern bereits heute vielversprechende Ergebnisse bei der Erzeugung nicht-klassischer Zustände sowie der Simulation von quantenmechanischen Systemen.

Seit Jahrzehnten verdoppelt sich etwa alle 18 Monate die Rechenleistung von Computern – empirisch beschrieben durch das Mooresche Gesetz, das einer der Gründungsväter der Firma Intel, Gordon Moore, 1965 formulierte. Seither folgt die Computertechnologie der dadurch vorgegebenen „roadmap“, vor allem durch fortschreitende Miniaturisierung, also immer kleinere Schaltelemente. Bei gleichbleibender Entwicklung müsste irgendwann im nächsten Jahrzehnt ein einzelnes Atom für die Darstellung eines Bits herhalten. Spätestens dann wäre es erforderlich, die Gesetze der Quantenphysik für das Rechnen heranzuziehen. Aber schon in den 1980er-Jahren überlegten David Deutsch und Richard Feynman, wie die Quantenphysik beim Rechnen helfen kann. Feynman hat als mögliche Anwendung zum Beispiel daran gedacht, die komplizierte Schrödinger-Gleichung eines Vielteilchensystems mithilfe eines anderen Quantensystems nachzubilden und zu simulieren, statt sie mühsam und unter großem Aufwand auf klassischen Computern zu berechnen. Dies waren damals aber rein akademische Überlegungen, da unklar war, ob und wie sich ein solcher Quantenrechner überhaupt realisieren ließe.
Als eigenständiges Forschungsfeld etablierte sich die Quanteninformationsverarbeitung ab Mitte der 1990er-Jahre. Auslöser dafür war die Entwicklung von Quantenalgorithmen, die eine sehr schnelle Lösung einiger wichtiger Probleme, wie die Faktorisierung großer Zahlen oder die Suche in Datenbanken, versprechen. Seither wurden verschiedenste Systeme für das Rechnen mit Quanten untersucht. Ignacio Cirac und Peter Zoller von der Universität Innsbruck schlugen 1995 einen der bislang erfolgreichsten Ansätze vor, der darauf beruht, Ionen in einer Paul-Falle zu manipulieren. Zwei interne Zustände der Ionen dienen dabei als Quantenbits (kurz Qubit), in denen die Quanteninformation gespeichert ist: |ψ〉 = c0 |0〉 + c1 |1〉. Die einzelnen Qubits lassen sich mithilfe von adressierten Laserstrahlen verarbeiten, wobei die Bewegung der Ionen in der Falle verwendet wird, um die logischen Gatteroperationen zwischen den Qubits zu erzeugen. Für den Bau eines universellen Quantencomputers reichen demnach zwei einfache Gatteroperationen und deren Kombinationen aus: Bei den sog. Ein-Qubit-Rotationen steuert man mit dem Laser gezielt einzelne Ionen an, während die zweite Operation das quanten­mechanische Analogon eines Booleschen XOR-Gatters ist. Die klassische XOR-Operation invertiert ein Bit, wenn ein Kontroll-Bit gesetzt ist, d. h. sie involviert zwei Bits. Das quantenmechanische Analogon – die CNOT-Operation (controlled NOT) – unterscheidet sich davon fundamental, da es auch für Überlagerungen gelten muss und daher verschränkte Zustände erzeugt. Das entsprechende Zwei-Qubit-Gatter lässt sich ebenfalls mit Laserlichtimpulsen bestimmter Frequenz und Dauer unter Anregung der Ionenbewegung realisieren. Wichtig für diesen Ansatz ist, dass alle Ionen eines Quantenregisters stets in den Grundzustand der harmonischen Bewegung, die sie in dem Fallen­potential ausführen, zu kühlen sind. ...

Share |
thumbnail image: Rechnen mit Quanten

Aktuelles Heft

Inhaltsverzeichnis
04 / 2017

thumbnail image: PJ 04 2017

Berufsreportage Robotik & künstliche Intelligenz

Chirale Quantenoptik

Molekulare Magnete

Zugang Physik Journal

Nur DPG-Mitglieder haben vollen Zugriff auf alle Hefte und Online-Inhalte des Physik Journal und müssen sich dafür mit ihrer Mitgliedsnummer registrieren » 

Erst wenn die Artikel des Physik Journal älter als drei Jahre sind, stehen sie kostenlos und frei zugänglich zur Verfügung

Als DPG-Mitglied erhalten Sie den Physik Journal Newsletter, wenn Sie sich dafür bei der DPG registrieren »

Mediadaten

Die Mediadaten 2017 für Werbe­mög­lich­kei­ten im Phy­sik Jour­nal finden Sie als PDFs hier: deutsch / eng­lisch.

Webinar

Optimierung: Der Schlüssel zur Bestimmung von unbekannten Parametern in Simulationsmodellen

  • 30. March 2017

Optimie­rungs­ver­fah­ren sind ein wich­ti­ges Werk­zeug in der Si­mu­la­tion. In die­sem We­bi­nar er­fah­ren Sie, wie Op­ti­mie­rung ein­ge­setzt wer­den kann, um die ge­nau­en Wer­te von Pa­ra­me­tern zu be­stim­men.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer