Auf dem Weg zum optischen Computer

  • 22. September 2015

Daten lassen sich mit Licht permanent auf einem Chip speichern.

Einen dauerhaften volloptischen Speicher, der sich auf einem Chip integrieren lässt, haben Wissenschaftler des Karlsruher Instituts für Technologie (KIT) sowie der Universitäten Münster, Oxford und Exeter entwickelt. Phasenübergangsmaterialien, die ihre optischen Eigenschaften je nach Anordnung der Atome ändern, ermöglichen es, mehrere Bits in einer einzigen Zelle zu speichern. Damit ist ein wesentlicher Schritt auf dem Weg zum optischen Computer gelungen.

Abb.: Ultrakurze Lichtpulse lassen das Material GST von kristallin zu amorph und zurück wechseln, schwache Lichtpulse lesen die Daten aus. (Bild: C. Ríos/U. Oxford)

Abb.: Ultrakurze Lichtpulse lassen das Material GST von kristallin zu amorph und zurück wechseln, schwache Lichtpulse lesen die Daten aus. (Bild: C. Ríos/U. Oxford)

Licht bestimmt die Zukunft der Informations- und Kommunikationstechnologie: Computer könnten mit optischen Elementen schneller und energieeffizienter arbeiten. Längst ist es üblich, Daten mit Licht über Glasfaserkabel zu übertragen. Doch auf dem Computer werden die Daten nach wie vor elektronisch verarbeitet und gespeichert. Der elektronische Austausch von Daten zwischen den Prozessoren und dem Speicher begrenzt die Ge­schwin­dig­keit moderner Rechner. Diesen Engpass bezeichnen Experten als Von-Neumann-Flaschenhals. Um ihn zu überwinden, genügt es nicht, Speicher und Prozessor optisch zu verbinden, da die optischen Signale wieder in elektrische konvertiert werden müssen. Wissen­schaftler suchen daher nach Wegen, sowohl Rechnungen als auch die Datenspeicherung rein optisch durchzuführen.

Forscher haben nun den ersten nicht volatilen, das heißt dauerhaften optischen On-Chip-Speicher entwickelt. „Optische Bits lassen sich mit Frequenzen bis zu einem Gigahertz schreiben; damit erlaubt unser vollphotonischer Speicher eine extrem schnelle Datensicherung“, erklärt Wolfram Pernice, der eine Arbeits­gruppe am Institut für Nanotechnologie (INT) des KIT leitete und inzwischen an der Universität Münster tätig ist. „Der Speicher ist sowohl mit der üblichen optischen Datenübertragung über Glasfaser als auch mit modernsten Prozessoren kompatibel“, ergänzt Harish Bhaskaran von der Universität Oxford.

Der neue Speicher kann Daten auch ohne Stromzufuhr jahrzehntelang bewahren. Besonders attraktiv ist überdies seine Fähigkeit, mehrere Bits in einer einzigen, nur einige Milliardstel Meter großen Zelle zu halten (Multi-Level Memory – Mehrebenenspeicher). Anstelle der üblichen Informationswerte 0 und 1 lassen sich mehrere Zustände in einem Element sichern oder sogar eigenständige Berechnungen ausführen.

Möglich machen das sogenannte Phasenübergangsmaterialien – neuartige Werkstoffe, die ihre optischen Eigenschaften abhängig von der Anordnung der Atome ändern: Sie können in kürzester Zeit zwischen dem kristallinen und dem amorphen Zustand wechseln. Für ihren Speicher verwendeten die Wissenschaftler das Phasenübergangsmaterial Ge2Sb2Te5 (GST). Mit ultrakurzen Lichtpulsen lässt sich der Wechsel von kristallin zu amorph (Daten speichern) bzw. von amorph zu kristallin (Daten löschen) auslösen. Lesen lassen sich die Daten mit schwachen Lichtpulsen.

KIT / PH

Share |

Bestellen

Sie interessieren sich für ein Bezugsmöglichkeiten von Optik & Photonik oder Laser Technik Journal?

Webinar

Einführung in die Simulation von Halbleiter-Bauelementen

  • 30. November 2017

Von Mosfets über LEDs bis zu Wafern – Halb­leiter­bau­elemente sind essen­tielle Bestand­teile moderner Tech­nik in nahezu allen Bran­chen. Die nume­ri­sche Simu­la­tion kann dabei ein wich­ti­ges Hilfs­mit­tel dar­stel­len, um diese Bau­elemen­te in ihrer Funk­tions­weise zu analy­sie­ren und somit deren Kon­zep­tion zu er­leich­tern.

Alle Webinare »

Site Login

Bitte einloggen

Andere Optionen Login

Website Footer